Instalação e instruções de operação **Power**^{IT}

Controladores de Fator de Potência **RVC**

Índice

Página

1. Leia ist	to primeiro					
0.5	Sobre este manual de instruções Segurança Compatibilidade eletromagnética					
2. Figuras	Fig.1 vista frontal Fig.2 vista traseira Fig.3 display de lcd e teclado	4 4 5 6				
3. Montag	Jem					
4. Arranjo	o das conexões	10				
5. Estraté	gia de comutação	11				
6. Modo		11				
7. Parâme	etros Programáveis					
8. Operaç	8. Operação de interface com o usuário					
9. Aceitaç	9. Aceitação simplificada					
10. Operaç	ão manual					
11. Prograr	mação A. Ajuste manual dos parâmetros B. Ajuste manual das funções especiais C. Ajuste automático de parmetross					
12. Alarme	– Temperatura – Sobretensão – Subtensão					
13. Teste e	3. Teste e solucionamento de problemas					
14. Compat	tibilidade electromagnética					
15. Especif	5. Especificações técnicas					

1. Leia isto primeiro

Sobre este manual de instruções

Este manual de instruções foi criado para ajudá-lo a instalar e operar o controlador RVC. Antes de instalar e operar o controlador RVC, leia atentamente este documento. Conserve-o à disposição dos responsáveis pela instalação, manutenção e operação.

Segurança

A instalação, manutenção e operação do controlador de FP devem ser executadas por eletricistas qualificados.

Não se exponha a voltagens.

Não abra o gabinete do controlador de FP. Ele não contém peças sujeitas a reparo.

O controlador de FP é conectado a um transformador de corrente. Não desligue as conexões do transformador de corrente antes de verificar se ele está curto-circuitado ou conectado a outra carga paralela de impedância suficientemente baixa. O descumprimento dessa precaução pode gerar sobretensões perigosas.

Não utilize esse produto com qualquer outra finalidade além do objetivo original.

Compatibilidade eletromagnética

Este controlador de FP foi testado e aprovado em conformidade com as normas da UE (União Européia) para EMC (Electromagnetic Compatibility, compatibilidade eletromagnética) com operação em 50 Hz e recebeu a marca CE para esse fim.

Você pode consultar as recomendações no capítulo 14, Compatibilidade eletromagnética, que úteis são para aprimorar a EMC.

2. Figuras

Fig.1. Vista frontal

Fig.2. Vista traseira

Fig.3. Display de LCD e teclado

A. Display de LCD

- 1. Saídas ativadas
- 2. FP indutivo
- 3. FP capacitivo
- 4. Alarme de fator potência não atingido
- 5. Indicação de excesso de temperatura
- 6. Demanda por ativação ou desativação dos estágios dos capacitores
- 7. Display numérico
- 8. Parâmetros programáveis
- 9. Modos
- 10. Indicação de funções especiais

2. A.

Insira as **Presilhas de Montagem (3)** nos **Furos de Fixação (4)** correspondentes do **Controlador**

3.

Gire o **Parafuso (5)** das **Presilhas de Montagem (3)** e aperte até que o **Controlador** esteja fixado

4. Arranjo das conexões

Diagrama de fios

- k, I: terminais do transformador de corrente
- L2, L3: 2 das 3 fases (não monitoradas pelo TC)
- M1, M2: terminais do contato normalmente fechado
- A: fonte comum do relé de saída
- 1-12: saídas

Conexão dos terminais

1. Empurre a alavanca do conector para trás com uma chave de fenda. 2. Mantenha a pressão na alavanca e insira o fio no orifício de conexão correspondente. 3. Solte a chave de fenda.

4. O fio está conectado adequadamente.

3

5. Estratégia de comutação

A comutação dos estágios é baseada no valor médio do consumo de potência reativa pela carga durante o tempo de espera de comutação. Ela permite:

- controlar o FP na presença de cargas com variação rápida,
- empregar um tempo de espera de comutação maior e, por consequência, reduzir o número de comutações.

Com base na demanda de potência reativa medida durante o tempo de espera de comutação, o RVC identifica o número de estágios a serem ativados. Em seguida, ele comuta automaticamente as maiores saídas primeiro para evitar comutações intermediárias desnecessárias.

Durante a sequência de comutação, é introduzido um tempo de atraso de 12 segundos entre cada passo para evitar problemas com transientes e satisfazer às exigências da EMC.

Quando é necessário desativar vários estágios, o controlador o faz de só uma vez, pois a desativação do capacitor é livre de transientes.

A comutação das saídas (estágios) é realizada no modo circular, no entanto, a comutação linear pode ser também ajustada como explicado no capítulo 7.

A comutação circular estende a vida útil dos capacitores e dos contactores equilibrando o esforço de comutação entre todas as saídas.

Em caso de "duplo primeiro estágio" (1:1:2:2...; 1:1:2:4:4:...; 1:1:2:4:8:8:..), a circularidade aplica-se às duas primeiras saídas e às saídas de maior valor.

6. Modos

Modo AUTO

- Os estágios são ativados e desativados automaticamente para alcançar o cos φ ajustado de acordo com a medida da corrente reativa, o parâmetro C/k, o tempo de espera de comutação, o número de saídas e o tipo de sequência.
- O display LCD mostra o cos $\boldsymbol{\phi}$ real.

Modo MAN

- Os estágios são ativadas e desativadas manualmente pressionando-se os botões + e -.
- O display LCD mostra o cos φ real.

Modo AUTO SET

Ajuste automático dos parâmetros a seguir:

- . C/k: ajuste automático de sensibilidade.
- **PHASÉ**: reconhecimento automático de conexão (incluindo terminais invertidos do TC e fase única).
- DELAY: ajuste automático do tempo de espera de comutação para 40 s.
- OUTPUT: reconhecimento automático do número de saídas.
- . SEQUENCE: reconhecimento automático do tipo de sequência.

cos φ de destino padrão de fábrica: 1,00

Modo MAN SET

Ajuste manual dos parâmetros a seguir:

- COS ϕ : FP a ser atingido
- . C/k: sensibilidade do controlador de FP
- PHASE: conexão da fase
- DELAY: tempo de espera de comutação
- OUTPUT: número de saídas
- SEQUENCE: tipo de sequência

7. Parâmetros Programáveis

COS φ

É o fator de potência ajustado que o controlador de FP deve alcançar através da comutação dos estágios. O valor pode ser ajustado entre 0,70 indutivo e 0,70 capacitivo no modo de ajuste manual (MAN SET - COS ϕ).

O fator de potência alternativo (passivo ou regenerativo) poderá ser ativado, assim, quando o fluxo de potência é reverso (P<0) o fator de potência desejado será forçado ao nível unitário (FP = 1.0). (Ver capítulo 8).

C/k

C/k é a sensibilidade do controlador de FP. Normalmente, esse parâmetro é ajustado para 2/3 da corrente do primeiro passo do capacitor. Ele representa o valor limite da corrente para o controlador de FP ativar ou desativar um estágio de capacitor. O C/k pode ser programado de 0,050 a 1,00. O valor pode ser ajustado automaticamente (AUTO SET) ou manualmente (MAN SET -C/k).

Deslocamento de fase

Se o RVC for conectado como foi demostrado no diagrama de conexões do controlador de FP, o deslocamento de fase será de 90° (ajuste padrão). Para obter informações sobre conexões especiais, consulte o capítulo 11 - Programação. O ajuste do deslocamento de fase pode ser feito automaticamente (AUTO SET) ou manualmente (MAN SET - PHASE).

Sobretensão / Subtensão

O usuário poderá ajustar os limites (máximo e mínimo) de tensão, de modo que o RVC desconectará todas as saídas caso os limites de tensão pré-ajustados sejam ultrapassados.

Linear / circular

A comutação linear segue o princípio de "primeira saída ligada, última saída desligada", e a comutação circular segue o princípio "primeira saída ligada, primeira saída desligada". O modo circular de comutação permite um tempo de vida-útil maior tanto para os capacitores como contatores, efetuando assim, a equalização (balanceamento) de operação de cada componente entre os demais (ajuste padrão).

Tempo de espera de comutação

O valor padrão do tempo de espera de comutação entre os estágios é 40 s. Esse valor pode ser programado de 1 s a 999 s.

O ajuste do tempo de espera de comutação pode ser feito manualmente (MAN SET - DELAY).

Saída

Saída representa o número de saídas físicas e pode ser programado de 1 a 12 conforme o tipo de RVC. O ajuste da saída pode ser feito automaticamente (AUTO SET) ou manualmente (MAN SET - OUTPUT).

Sequência

As sequências de comutação permitidas pelos controladores RVC são:

1:1:1:1:1::1	1:1:2:2:2::2	1:2:3:6:6::6
1:2:2:2:2::2	1:1:2:4:4::4	1:1:2:3:3::3
1:2:4:4:4::4	1:1:2:4:8::8	1:1:2:3:6::6
1:2:4:8:8::8	1:2:3:3:3::3	
	13	

8. Operação de interface com o usuário

9. Aceitação simplificada

Etapa 1. Energize o controlador de FP

Obs.: Se houver um curto-circuito no enrolamento secundário do TC, não se esqueça de abri-lo após conectar a entrada de corrente ao controlador de FP.

Após uma interrupção de energia, o tempo de espera na reconfiguração é de 40 segundos. Durante esse tempo de espera, o ícone do alarme pisca e o contato do alarme permanece fechado.

O modo AUTO é ativado e o display LCD indica a medida cos $\boldsymbol{\phi}.$

AVISO: para bancos automáticos de capacitores com um tempo de espera de comutação maior do que 40s., defina o tempo de espera antes de iniciar o Ajuste Automático (consulte o capítulo 11).

Etapa 2. Ative o modo AUTO SET pressionando o botão Mode duas vezes.

O display LCD exibe RU.

Etapa 3. Pressione os botões + e simultaneamente para iniciar o ajuste automático.

RU começa a piscar.

C/k, a fase, a saída e a sequência são ajustadas automaticamente.

O tempo de espera de comutação também é ajustado para 40 segundos a menos que seja programado um valor maior previamente. Qualquer valor menor será apagado e substituído pelo valor 40 segundos.

Durante esse procedimento, que pode levar vários minutos, os estágios dos capacitores serão ativados.

O procedimento de ajuste é finalizado tão logo $\ensuremath{\textit{RU}}$ pare de piscar.

Se a carga estiver sendo modificada rapidamente, o controlador poderá ter que comutar nos estágios diversas vezes.

Se um erro for detectado, o procedimento de Ajuste Automático será interrompido e uma mensagem de erro será exibida.

Reinicie o procedimento assim que a falha tiver sido corrigida. Favor consultar o capítulo 13 para obter uma descrição completa das mensagens de erro e suas soluções.

Etapa 4. Pressione o botão Mode uma vez para ativar o ajuste manual do cos ϕ desejado.

O valor já programado é exibido. Se o RVC nunca tiver sido programado antes, o display LCD exibirá 1.00.

Etapa 5. Ajuste o cos o desejado pressionando o botão - ou +.

🕥 indica uma FP indutivo e

→ indica uma FP capacitivo.

Etapa 6. Reative o modo AUTO acionando o botão Mode repetidamente.

Durante esse procedimento, serão exibidos os valores dos parâmetros ajustados automaticamente na etapa anterior. Todos os parâmetros também podem ser programados manualmente (consulte o capítulo 11).

Uma vez no modo AUTO, o RVC ativa automaticamente os estágios necessários para alcançar o cos o de ajustado.

O display LCD exibe o cos φ real.

Obs.: um valor negativo de cos φ indica que a carga está reinjetando potência reativa na rede. O RVC continua operando normalmente.

10. Operação manual

No modo AUTO, pressione o botão Mode uma vez para ativar o modo MAN

A ativação ou desativação é feita manualmente pressionandose o botão + ou -.

e indicam, respectivamente, o processamento de uma demanda para ativar ou desativar um estágio.

O display indica o $\cos \varphi$ medido, **____** para indutivo e **____** para capacitivo.

11. Programação

11.A. Ajuste manual dos parâmetros

- Para percorrer os diversos modos, utilize o botão Mode como representado no fluxograma p.14.
- Para ajustar o parâmetro selecionado, utilize os botões ou +.

1. $\cos \phi$ a ser atingido

indica uma FP indutivo e

indica uma FP capacitivo.

O valor do cos ϕ ajustado é exibido.

2 C/k

O valor de C/k programado é exibido.

O ajuste recomendado de C/k pode ser calculado através da fórmula a seguir ou lido diretamente na tabela adiante

Rede trifásica:

Rede monofásica:

$$C / k = 0.62 \times \frac{Q \times 1000}{\sqrt{3} \times U \times k}$$

$$C / k = 0.62 \times \frac{Q \times 1000}{U \times k}$$

Q: potência trifásica reativa de um estágio (kvar)

U: voltagem do sistema (V)

k: relação do transformador de corrente

Q: potência reativa de um estágio (kvar) U: voltagem do sistema (V) k: relação do transformador de corrente

RELAÇÃO CT		k		FAIXA DO ESTÁGIO DO CAPACITOR (kvar)										
			5	10	15	20	30	40	50	60	70	90	100	120
10/1	50/5	10	.45	.90										
20/1	100/5	20	.23	.45	.68	.90								
30/1	150/5	30	.15	.30	.45	.60	.90							
40/1	200/5	40	.11	.23	.34	.45	.68	.90						
60/1	300/5	60	.07	.15	.23	.30	.45	.60	.75	.90				
80/1	400/5	80	.056	.11	.17	.23	.34	.45	.56	.68	.79	.90		
100/1	500/5	100		.09	.14	.18	.27	.36	.45	.54	.63	.81	.90	
120/1	600/5	120		.07	.11	.15	.23	.30	.38	.45	.53	.68	.75	.90
160/1	800/5	160		.056	.08	.11	.17	.23	.28	.34	.40	.50	.56	.68
200/1	1000/5	200			.067	.09	.13	.18	.23	.27	.31	.40	.45	.54
300/1	1500/5	300				.060	.09	.12	.15	.18	.21	.27	.30	.36
400/1	2000/5	400					.067	.09	.11	.14	.16	.20	.23	.27
600/1	3000/5	600						.06	.07	.09	.11	.14	.15	.18

Tabela C/k para um sistema trifásico / 400V.

3. Fase

É exibido o valor programado da fase.

O deslocamento de fase a ser programado pode ser selecionado através das tabelas abaixo.

Conexão trifásica (De fase a fase)

A voltagem é medida entre L2 e L3.

Conexão do TC	Esquema de conexão	Fase a ser programada			
L1 Direta		90			
L1 Invertida		270			
L2 Direta		330			
L2 Invertida		150			
L3 Direta		210			
L3 Invertida		30			
20					

Conexão trifásica (Da fase ao neutro)

A voltagem é medida entre o L1 e o Neutro.

Conexão do TC	Esquema de conexão	Fase a ser programada
L1 Direta		0
L1 Invertida		180
L2 Direta	11 12 14 15 15 15 15 15 15 15 15 15 15	240
L2 Invertida		60
L3 Direta		120
L3 Invertida	L1 13 19 10 10 10 10 10 10 10 10 10 10 10 10 10	300

Conexão do TC	Esquema de conexão	Fase a ser programada
Direta	L1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0
Invertida		180

4. Tempo de espera

É exibido o valor programado do tempo de espera (o valor padrão é 40 s).

O tempo de atraso pode ser programado de 1 s a 999 s.

Recomenda-se que o tempo de espera de comutação não seja menor que 40 segundos.

5. Saída

É exibido o valor programado da saída.

O valor de saída pode ser programado como se segue:

RVC 3: até 3

RVC 6: até 6

RVC 8: até 8

RVC 10: até 10

RVC 12: até 12

6. Sequência

É exibido o tipo de sequência programada conforme a tabela abaixo.

Tipo de sequência	Display
1:1:1:1:1::1	1.1.1
1:2:2:2:2::2	1.2.2
1:2:4:4:4::4	1.2.4
1:2:4:8:8::8	1.2.8
1:1:2:2:2::2	1.1.2
1:1:2:4:4::4	1.1.4
1:1:2:4:8::8	1.1.8
1:2:3:3:3::3	1.2.3
1:2:3:6:6::6	1.2.6
1:1:2:3:3::3	1.1.3
1:1:2:3:6::6	1.1.6

11.B. Ajuste manual das funções especiais

- Pressione o botão "MODE" repetidamente até o modo "MAN" (Manual).
- Pressione os botões "+" e "-" simultaneamente durante (no mínimo) três segundos (3 s).
- Para ajustar o parâmetro selecionado, utilize os botões "+" e "-".
- Pressione o botão "MODE" repetidamente até o modo "AUTO".
- 1. O ajuste do cos ϕ alternativo (Passivo / Regenerativo) (acessado através do modo "Man Set" em "cos ϕ ")

A indicação "A" surge quando o parâmetro cos φ alternativo está ativado (embora o cos φ inicial ajustado esteja diferente para o modo passivo).

2. Linear / circular

(acessado através do modo "Man Set" - em "output")

A indicação "B" surge quando o parâmetro de comutação linear está ativado.

3. Sobretensão / Subtensão

(acessado através do modo "Man Set" - em "phase")

A indicação "C" e 🚺 (piscando) surge quando o limite de sobretensão estiver apto para um novo ajuste através dos botões "+" and "-".

A indicação "C" e (piscando) surge quando o limite de subtensão estiver apto para um novo ajuste através dos botões "+" and "-".

Pressione o botão "MODE" para validar a alteração.

O usuário poderá ajustar os limites máximo e mínimo para o parâmetro de tensão. O RVC desconectará todas as saídas caso a tensão exceda algum limite pré-ajustado. Estes limites estão descritos a seguir:

Faixa entre:	100-120V	200-240V	380-440V
Valor Padrão (mínimo)	70V	140V	260V
Valor Padrão (máximo)	132V	264V	460V
Faixa de Vmín-Vmax	DIS - 50V-160V	DIS - 100V-320V	DIS - 190V-550V

DIS - significa que a característica de proteção será desabilitada.

Estes limites poderão ser alterados pelo usuário através dos botões "+" e "-". Caso seja selecionado um valor limite não padrão, a indicação "C" aparecerá no display e no modo "AUTO".

11.C. Ajuste automático de parâmetros

O modo AUTO SET oferece três submenus:

- 1. Ajuste de C/k, fase, saída e sequência.
- 2. Ajuste de C/k e fase
- 3. Ajuste de saída e sequência

Para selecionar o modo AUTO SET - submenu 1, use o botão Mode como representado no fluxograma pág. 14.

Para percorrer os 3 submenus, use o botão +.

Para iniciar o ajuste automático, pressione os botões + e - simultaneamente.

RU começa a piscar.

Os parâmetros indicados são ajustados automaticamente. Durante esse procedimento, que pode levar vários minutos, os estágios de capacitor são ativados. O procedimento de ajuste é finalizado tão logo RU pare de piscar.

O procedimento pode ser interrompido pressionando-se mais uma vez os botões + e - simultaneamente.

12. Alarme – Temperatura – Sobretensão – Subtensão

Alarme

O ícone de alarme (1) é exibido quando o cos φ de ajustado não é atingido 6 minutos após todas as e entradas terem sido ativadas.

Temperatura

O ícone de temperatura (2) aparece quando a temperatura interna do RVC ultrapassa os 85°C.

Nesse caso, todos os passos são desconectados automaticamente.

Os passos são reativados quando a temperatura interna baixa dos 80°C e o ícone de temperatura desaparece.

Contato de alarme

O RVC também é equipado com um contato de alarme normalmente fechado. Ele é aberto toda vez que:

- 1. O cos ϕ de ajustado não é alcançado nos 6 minutos seguintes a ativação de todas as saídas.
- 2. A temperatura interna do RVC ultrapassa os 85°C.
- 3. A fonte de alimentação está desligada.
- 4. A tensão da rede excede os limites pré-ajustados.

Após uma interrupção de energia, o tempo de espera na reconfiguração é de 40 segundos. Durante esse tempo de espera, o ícone do alarme pisca e o contato do alarme permanece fechado. O contato do alarme abre quando o estado do alarme desaparece.

Condição	Ícone do Alarme	Ícone de Temp.	Relê do Alarme	Saídas
Reinício (40 s)	piscando		fechado	aberta(s)
Alarme do Cos φ	fixo		fechado	todas fechadas após 6 minutos
Sobretemperatura	piscando	fixo	fechado	desconectada(s)
Sobretensão	piscando		fechado	desconexão saída por saída
Subtensão	piscando		fechado	desconexão rápida (< 1 ciclo da rede

13. Teste e solucionamento de problemas

Teste

Após a instalação do banco de capacitor automático e a programação dos parâmetros de comutação, os testes a seguir podem ser realizados, segundo a situação da carga.

A. Sem carga ou cos $\varphi = 1$ ou carga capacitiva (ajuste o cos φ desejado para 0,95 ind.)

- 1. Selecione o modo MAN.
- 2. Adicione dois ou mais estágios pressionando o botão +.
- 3. Selecione o modo AUTO.

Todos os estágios de capacitor devem ser desativados com o tempo de espera programado entre cada operação de comutação. Se não forem desativados todos os estágios, verifique o seguinte:

- Foi conectada uma carga indutiva?
- O valor da razão C/k ou do tamanho do estágio foi programado corretamente? (Recomenda-se ajustar C/k com um valor ligeiramente maior que o valor calculado.)

B. Carga indutiva

- 1. Ajuste o cos ϕ desejado =1
- 2. Selecione o modo AUTO.

Em seguida, os estágios dos capacitores serão ativados para compensar a carga indutiva (o controlador não será ativo se a corrente indutiva for menor que o valor C/k predefinido. Nesse caso, siga o teste do item A acima.)

Se todos os estágios forem ativados e ainda houver demanda por outros, verifique o ajuste de C/k. Caso esteja correto, o banco é muito pequeno para compensar o cos $\varphi = 1$. Selecione um valor menor para cos φ .

Quando um estágio é ativado e desativado seguidamente, significa que C/k está ajustado com um valor muito baixo (a menos que a carga flutue periodicamente com um período igual ao tempo de espera de comutação).

Solucionamento de problemas

Falha: O controlador não ativa nem desativa passos, embora haja uma considerável carga indutiva variável.

Solução

- Verifique se o controlador está no modo automático.
- Verifique o ajuste do deslocamento de fase e C/k.
- Verifique se a ponte de curto-circuito do TC foi removida.

Falha : O controlador não parece ativar nenhum estágio.

Solução

Aguarde o tempo de espera entre comutações e/ou o tempo de espera por interrupção de energia.

Falha : Um dos indicadores está piscando.

Solução

Situação normal quando a corrente indutiva real varia em torno da sensibilidade ajustada (C/k).

Falha : O fator de alimentação não é alcançado.

Solução

Com pouca ou nenhuma carga, um fator de potência baixo pode corresponder a uma corrente indutiva muito pequena. Os estágios correspondentes do capacitor são grandes demais para a compensação.

Se o cos ϕ médio em um período é baixo demais, o cos ϕ predefinido poderá ser aumentado.

Falha : Todos os capacitores são ativados apesar da potência reativa necessária ser relativamente baixa.

Solução Verifique o ajuste dos valores de fase e C/k.

Falha : O controlador está conectado mas não funciona (nada no display).

Solução Verifique o ajuste da voltagem.

Falha : O procedimento de ajuste automático pára e o controlador exibe uma mensagem de erro 'FXX'.

Solução

Identifque o significado da mensagem de erro (consulte a tabela a seguir) e aja conforme indicado.

Falha : Todos os capacitores são desligados e o ícone de alarme pisca por mais de 40 segundos.

Solução

Verifique a tensão da rede e os parâmetros de tensão máxima e mínima ajustados.

Mensagens de erro de RVC durante um Ajuste Automático

Mensag	em Descrição	Ação Recomendada
F-1	Corrente muito baixa	Verifique se a ponte de curto-circuito do TC foi removida e inicie o Ajuste Automático novamente.
F-2	Fase não encontrada depois de 10 tentativas. A carga está variando muito rapidamente.	Reinicie o procedimento de Ajuste automático sob condições mais estáveis.
F-3	Erro de fase : o valor mais próximo é 0°. O controlador não conseguiu encontrar uma configuração conhecida.	Verifique as conexões, os capacitores e os fusíveis.
F-4	Erro de fase : o valor mais próximo é 30°. O controlador não conseguiu encontrar uma configuração conhecida.	Verifique as conexões, os capacitores e os fusíveis.
F-5	Erro de fase : o valor mais próximo é 60°. O controlador não conseguiu encontrar uma configuração conhecida.	Verifique as conexões, os capacitores e os fusíveis.
F-6	Erro de fase : o valor mais próximo é 90°. O controlador não conseguiu encontrar uma configuração conhecida.	Verifique as conexões, os capacitores e os fusíveis.
F-7	Erro de fase : o valor mais próximo é 120°. O controlador não conseguiu encontrar uma configuração conhecida.	Verifique as conexões, os capacitores e os fusíveis.
F-8	Erro de fase : o valor mais próximo é 150°. O controlador não conseguiu encontrar uma configuração conhecida.	Verifique as conexões, os capacitores e os fusíveis.
F-9	Erro de fase : o valor mais próximo é 180°. O controlador não conseguiu encontrar uma configuração conhecida.	Verifique as conexões, os capacitores e os fusíveis.
F10	Erro de fase : o valor mais próximo é 210°. O controlador não conseguiu encontrar uma configuração conhecida.	Verifique as conexões, os capacitores e os fusíveis.

Mensag	em Descrição	Ação Recomendada
F-11	Erro de fase : o valor mais próximo é 240°. O controlador não conseguiu encontrar uma configuração conhecida.	Verifique as conexões, os capacitores e os fusíveis.
F-12	Erro de fase : o valor mais próximo é 270°. O controlador não conseguiu encontrar uma configuração conhecida.	Verifique as conexões, os capacitores e os fusíveis.
F-13	Erro de fase : o valor mais próximo é 300°. O controlador não conseguiu encontrar uma configuração conhecida.	Verifique as conexões, os capacitores e os fusíveis.
F-14	Erro de fase : o valor mais próximo é 330°. O controlador não conseguiu encontrar uma configuração conhecida.	Verifique as conexões, os capacitores e os fusíveis.
F-15	C/k não encontrado após 10 tentativas. A carga está variando muito rapidamente.	Reinicie o procedimento de Ajuste automático sob condições mais estáveis.
F-16	C/k muito baixo (< 0.05). Tamanho do estágio muito baixo ou razão TC muito alta.	Adapte o tamanho do estágio ou a razão TC.
F-17	C/k muito alto (> 1.00). Tamanho do estágio muito alto ou razão TC muito baixa.	Adapte o tamanho do estágio ou a razão TC.
F-18	Sequência não encontrada após 10 tentativas. A carga está variando muito rapidamente.	Reinicie o procedimento de Ajuste automático sob condições mais estáveis.
F-19	Sequência desconhecida. O controlador não conseguiu encontrar uma sequência conhecida.	Verifique as conexões, os capacitores e os fusíveis.
F-20	Erro de sequência : o valor mais próximo é 1:1:1:1:1. O controlador não conseguiu encontrar uma sequência conhecida.	Verifique as conexões, os capacitores e os fusíveis.

Mensag	em Descrição		Ação Recomendada	
F-21	Erro de sequência : o valor mais próxi é 1:2:2:2:2. O controlador não conseg encontrar uma sequência conhecida	mo uiu 1.	Verifique as conexões, os capacitores e os fusíveis.	
F-22	Erro de sequência : o valor mais próxi é 1:2:4:4:4. O controlador não conseg encontrar uma sequência conhecida	mo uiu a.	Verifique as conexões, os capacitores e os fusíveis.	
F-23	Erro de sequência : o valor mais próxi é 1:2:4:8:8. O controlador não conseg encontrar uma sequência conhecida	mo uiu a.	Verifique as conexões, os capacitores e os fusíveis.	
F-24	Erro de sequência : o valor mais próxi é 1:1:2:2:2. O controlador não conseg encontrar uma sequência conhecida	mo uiu a.	Verifique as conexões, os capacitores e os fusíveis.	
F-25	Erro de sequência : o valor mais próxi é 1:1:2:4:4. O controlador não conseg encontrar uma sequência conhecida	mo uiu a.	Verifique as conexões, os capacitores e os fusíveis.	
F-26	Erro de sequência : o valor mais próxi é 1:1:2:4:8. O controlador não conseg encontrar uma sequência conhecida	mo uiu 1.	Verifique as conexões, os capacitores e os fusíveis.	
F-27	Erro de sequência : o valor mais próxi é 1:2:3:3:3. O controlador não conseg encontrar uma sequência conhecida	mo uiu a.	Verifique as conexões, os capacitores e os fusíveis.	
F-28	Erro de sequência : o valor mais próxi é 1:2:3:6:6. O controlador não conseg encontrar uma sequência conhecida	mo uiu a.	Verifique as conexões, os capacitores e os fusíveis.	
F-29	Erro de sequência : o valor mais próxi é 1:1:2:3:3. O controlador não conseg encontrar uma sequência conhecida	mo uiu a.	Verifique as conexões, os capacitores e os fusíveis.	
F-30	Erro de sequência : o valor mais próxi é 1:1:2:3:6. O controlador não conseg encontrar uma sequência conhecida	mo uiu a.	Verifique as conexões, os capacitores e os fusíveis.	
		31]	

14. Compatibilidade eletromagnética

Este controlador de FP foi testado e aprovado em conformidade com as normas da UE (União Européia) para EMC (Electromagnetic Compatibility, compatibilidade eletromagnética) com operação em 50 Hz e recebeu a marca CE para esse fim.

Quando o aparelho é utilizado em um sistema, as diretivas da UE podem exigir que seja verificada a conformidade do sistema com a EMC.

As recomendações a seguir são úteis para aprimorar o desempenho de EMC em um sistema:

- 1. Em geral, gabinetes metálicos melhoram o desempenho de EMC.
- 2. Afaste os cabos de frestas no gabinete.
- 3. Passe os cabos próximo a estruturas metálicas aterradas.
- 4. Use vários fios de aterramento em portas, painéis e outras peças semelhantes quando necessário.
- 5. Evite impedâncias de aterramento comum.

15. Especificações técnicas

Sistema de medição:

Sistema microprocessado para redes trifásicas equilibradas ou redes monofásicas.

Voltagem de operação:

100V a 120V, 380V a 440V conforme o tipo de controlador de FP.

Tolerância de voltagem:

+/- 10% sobre as voltagens operacionais indicadas.

Amplitude de frequência:

50 ou 60 Hz +/- 5% (ajustes automáticos à frequência da rede).

Entrada de corrente:

5A (RMS).

Impedância da entrada de corrente:

<0,1 ohm.

Consumo:

15 VA máx.

Faixa de contato de saída:

- Corrente contínua máx.: 1,5A.
- Corrente de pico máx.: 5A.
- Voltagem máx.: 440 Vac.

• O terminal A é capacitado para uma corrente contínua de 16A.

Contato de alarme:

Contato normalmente fechado.

- Corrente contínua máx.: 5A.
- Voltagem de ruptura capacitada/máxima: 250Vac/440Vac.

Ajuste do fator de alimentação:

De 0,7 indutivo a 0,7 capacitivo.

Configuração de corrente inicial (C/k):

• 0,05 a 1A.

• medição automática de C/k.

Número de saídas:

RVC 3: 3 RVC 10: 10 RVC 6: 6 RVC 12: 12 RVC 8: 8

Tempo de comutação entre as etapas:

programável de 1 s a 999 s (independentemente da carga reativa).

Seqüências de Comutação

1:1:1:1:1::1	1:2:2:2:2::2
1:2:4:4:4::4	1:2:4:8:8::8
1:1:2:2:2::2	1:1:2:4:4::4
1:1:2:4:8::8	1:2:3:3:3::3
1:2:3:6:6::6	1:1:2:3:3::3
1:1:2:3:6::6	

Modo de comutação:

Integral, direta, circular ou linear. **Função salvar:**

Todos os modos e parâmetros programados são salvos em uma memória não volátil.

Liberação por interrupção de energia:

Desconexão automática e rápida (< 17ms 60Hz) caso ocorra falta de energia ou queda de tensão.

Tempo de espera na reconfiguração por interrupção de energia: 40 s.

Proteção de sobretensão e subtensão.

Adaptação automática à rotação de fases da rede e dos terminais do TC.

Insensibilidade a harmônicos.

Trabalho com cargas generativas e regenerativas (operação nos quatro quadrantes).

Contraste do LCD compensado automaticamente com a temperatura.

Temperatura operacional:

-10° C a 70° C.

Temperatura de armazenagem: - 30° C a 85° C.

Posição de montagem:

Montagem em painel vertical.

Dimensões:

144 x 144 x 80 mm (A x L x P).

Peso:

0,8 kg (desembalado).

Conector:

WAGO.

Proteção de placa frontal: IP 40.

Umidade relativa:

Máximo de 95%; sem condensação.

Marca CE.

Este produto foi certificado pelo Grupo ABB, como Industrial[™] Enabled[™] -Information Level. Toda a informação do produto é fornecida em formato electrónico interactivo, baseado na tecnologia "ABB aspect Object[™]. O compromisso "Industrial[™] da ABB, garante que qualquer bloco construtivo da empresa está equipado com a informação necessária à sua eficiente instalação, operação e manutenção durante o ciclo de vida do produto.

Embora todo cuidado tenha sido tomado para garantir que as informações contidas nesta publicação estejam corretas, nenhuma responsabilidade poderá ser aceita por qualquer imprecisão. Reservamo-nos o direito de alterar ou modificar as informações contidas neste instrumento a qualquer momento à luz de desenvolvimentos técnicos ou de outra natureza. As especificações técnicas são válidas somente sob condições normais de operação. Não aceitamos qualquer responsabilidade pela má utilização do produto e não teremos responsabilidade por danos indiretos ou conseqüentes.

Asea Brown Boveri Jumet S.A.

Zoning Industriel de Jumet B-6040 Charleroi, Belgium Phone: +32 71 250 811 Fax: +32 71 344 007 2GCS201095A0050