Manual IDM G5 Multimedidor

- Conexões elétricas
- Utilização do teclado
- Software de configuração
- Protocolo de comunicação Modbus RTU
- Dimensional

Indice

1. Alimentação Auxiliar	
2. Esquema de ligações	3
2.1- Conexões na rede	3
3. Comunicação	6
4. Utilização local	7
4.1-Configuração	7
4.1.1-Menu Configurar	9
4.1.2-Menu Comunicação	13
4.1.3-Menu Gráfico	14
4.1.4-Menu Sair	14
5. Utilização através do Software IBIS_cnf	15
5.1- Configuração Básica	15
5.2- Indicações	18
6. Leitura de através de software supervisório	22
6.1- Fatores de conversão	23
7. Problemas comuns	26
7.1 O instrumento não liga	26
7.2 O instrumento não registra valores	26
7.3 Os instrumento apresenta valores incoerentes	26
7.4 O instrumento não comunica corretamente	26
7.5 O instrumento apresenta valores errados de energia	27
8 Dimensões e diagramas de conexões	28

Para garantir o correto funcionamento do instrumento devem-se seguir os esquemas de ligações e as informações deste documento. Para outras informações elétricas consultar a ficha técnica do item.

1. Alimentação Auxiliar

Para o funcionamento do instrumento deve-se alimentar o instrumento com a tensão de alimentação correta (terminais 13 e 14), conforme está indicado na etiqueta do instrumento. Recomenda-se a conexão do terminal de terra (12) para proteção, porém ele não é obrigatório.

Alimentação Auxiliar

Figura 1 – Conexão Alimentação Auxiliar

Atenção: Alimentar o instrumento fora dos limites especificados poderá danificá-lo.

2. Esquema de ligações

2.1- Conexões na rede

Antes de qualquer conexão deve-se certificar que os valores de tensões e correntes da rede em que o multimedidor será instalado estão dentro dos limites especificados na etiqueta do instrumento.

Atenção: A conexão de sinais fora dos limites especificados poderá danificá-lo permanentemente.

Figura 2 - Esquema de ligações para os multimedidores IDM 5

O aterramento dos Transformadores de Corrente (TC) constitui uma proteção adicional para o sistema, porém não é obrigatório. Quando realizada deve-se aterrar os terminais 3, 6 e 9 do multimedidor ou os terminais S2 dos TCs

 Sistema Trifásico desequilibrado com 3 Tcs (verificar a polaridade dos TCs e o terminal de aterramento)

Fase 1: Entrada de tensão terminal 2 Entrada de corrente terminais 1 (S1) e 3 (S2)
Fase 2: Entrada de terminal 5 Entrada de corrente terminais 4 (S1) e 6 (S2)
Fase 3: Entrada de terminal 8 Entrada de corrente terminais 7 (S1) e 9 (S2)
Neutro: Terminal 11 (Este terminal não deve ser conectado no caso da utilização de 2 TPs)

Sistema Trifásico desequilibrado com 2 Tcs (verificar a polaridade dos TCs)

Fase 1: Entrada de tensão terminal 2 Entrada de corrente terminais 1 (S1) e 4 (S2)
Fase 2: Entrada de tensão terminal 5
Fase 3: Entrada de tensão terminal 8 Entrada de corrente terminais 6A (S1) e 9 (S2) Jumper de ligação 1: Entre os terminais 3 e 6 Jumper de ligação 2: Entre os terminais 4A e 7
Neutro: Terminal 11 (Este terminal não deve ser conectado no caso da utilização de 2 TPs)

• Sistema Trifásico esequilibrado com 1 TC (verificar a polaridade do TC)

Fase 1: Entrada de terminal 2 Entrada de corrente terminais 1 (S1) e 4 (S2)
Fase 2: Entrada de terminal 5 Fase 3: Entrada de terminal 8 Neutro: Terminal 11 (Este terminal não deve ser conectado no caso da utilização de 2 TPs)

• Sistema monofásico

Fase 1: Entrada de tensão terminal 2 Entrada de corrente terminais 1 e 3 Neutro: Terminal 11

Importante:

Nas conexões para sistemas trifásicos com três algumas variáveis não são apresentadas devido à ausência do conector do neutro. A tabela abaixo apresenta as variáveis apresentadas no display em função do tipo de rede.

Variável	Tipo de rede				
Tensão entre L1 e Neutro	4N3E, 4N1E,1N1E				
Tensão entre L2 e Neutro	4N3E, 4N1E				
Tensão entre L3 e Neutro	4N3E, 4N1E				
Tensão entre L1 e L2	4N3E,4N1E,3N3E, 3N2E,3N1E				
Tensão entre L2 e L3	4N3E,4N1E,3N3E, 3N2E,3N1E				
Tensão entre L3 e L1	4N3E,4N1E,3N3E, 3N2E,3N1E				
Corrente I1	Todos				
Corrente I2	4N3E,4N1E,3N3E, 3N2E,3N1E				
Corrente I3	4N3E,4N1E,3N3E, 3N2E,3N1E				
Corrente de neutro	4N3E, 4N1E				
Potência Ativa P1	4N3E, 4N1E				
Potência Ativa P2	4N3E, 4N1E				
Potência Ativa P3	4N3E, 4N1E				
Potência Ativa Total PT	Todos				
Potência Reativa Q1	4N3E, 4N1E				
Potência Reativa Q2	4N3E, 4N1E				
Potência Reativa Q3	4N3E, 4N1E				
Potência Reativa Total QT	Todos				
Potência Aparente S1	4N3E, 4N1E				
Potência Aparente S2	4N3E, 4N1E				
Potência Aparente S3	4N3E, 4N1E				
Potência Aparente Total ST	Todos				
Fator de potência 1	4N3E,4N1E				
Fator de potência 2	4N3E, 4N1E				
Fator de potência 3	4N3E, 4N1E				
Fator de potência T	Todos				
Frequência	Todos				
Energia consumida em MWh *1	Todos				
Energia consumida em kWh *1	Todos				
Energia consumida em Wh *1	Todos				
Energia consumida em Mvarh *1	Todos				

Energia consumida em kvarh *1	Todos				
Energia consumida em varh *1	Todos				
Energia fornecida em MWh *1	Todos				
Energia fornecida em kWh *1	Todos				
Energia fornecida em Wh *1	Todos				
Energia fornecida em Mvarh *1	Todos				
Energia fornecida em kvarh *1	Todos				
Energia fornecida em varh *1	Todos				
Demanda de Corrente I1	Todos				
Demanda de Corrente I2	4N3E,4N1E,3N3E, 3N2E,3N1E				
Demanda de Corrente I3	4N3E,4N1E,3N3E, 3N2E,3N1E				
Demanda de Potência Ativa	Todos				
Demanda de Potência Reativa	Todos				
Demanda de Potência Aparente	Todos				
Cos Phi 1	4N3E,4N1E				
Cos Phi 2	4N3E, 4N1E				
Cos Phi 3	4N3E, 4N1E				
Cos Phi T	4N3E,4N1E				
THD IEEE U1	Todos				
THD IEEE U 2	4N3E,4N1E,3N3E, 3N2E,3N1E				
THD IEEE U 3	4N3E,4N1E,3N3E, 3N2E,3N1E				
THD IEEE I1	Todos				
THD IEEE I2	4N3E,4N1E,3N3E, 3N2E,3N1E				
THD IEEE I3	4N3E,4N1E,3N3E, 3N2E,3N1E				
Energia Aparente MVAh	Todos				
Energia Aparente kVAh	Todos				
Energia Aparente VAh	Todos				

3. Comunicação

Para a comunicação através da interface RS 485 é importante certificar que os terminais A e B estejam conectados corretamente em todos os elementos da rede. *Certifique-se também se todos os elementos da rede possuem a mesma configuração de baud rate e formato do byte e que não existam endereços repetidos.*

O comprimento máximo da rede é de 1200m, é recomendada a instalação de resistores nos extremos da rede, conforme a figura 3. Recomenda-se a utilização de cabos com shield aterrando apenas um dos extremos da malha. Para rede com comprimento superior a 1200m ou com mais de 31 instrumentos deve-se utilizar repetidor de sinal.

6

4. Utilização local

Para que o aparelho meça corretamente é preciso configurar os seguintes parâmetros:

Corrente Primária do TC Tensão Primária do TP (Somente quando o instrumento estiver conectado através de TP) Tensão Segundária do TP (Somente quando o instrumento estiver conectado através de TP) Tipo de rede Campo de Energia

Para a comunicação é preciso configurar os seguintes parâmetros:

Endereço do instrumento Baud Rate Formato do byte

<u>Teclado</u>

Tecla LOOP: Acessa o menu para configurar o aparelho *Tecla Avançar:* Altera a tela de medição ou altera parâmetro de configuração (somente no modo de configuração com a senha habilitada) *Tecla Retornar:* Altera a tela de medição ou altera parâmetro de configuração (somente no modo de configuração com a senha habilitada) *Tecla "*"* Confirma a configuração

Tecla "*" Confirma a configuração

Indicações

Apertando-se a tecla " ∇ " ou " Δ ", permitirá a varredura das indicações (Corrente, Tensão de linha, Tensão de fase, Potência Ativa , Potência Reativa , Potência Aparente, Fator de Potência, Energia, etc).

4.1-Configuração

Mostrar máximo ou mínimo

Para mostrar os valores máximos ou mínimos, basta pressionar ao mesmo tempo as teclas " ∇ + \Box " (mostrar mínimo) ou " Δ + \Box " (mostrar máximo).

Verificar configurações

Para verificar as configurações é preciso acessar o menu (figura 5) através da tecla LOOP "C". Logo após, selecionar a opção desejada e pressionar a tecla "*".

Menu Configurar

Esta opção permite acessar e modificar os parâmetros do multimedidor. Para alterá-los é necessário habilitar a senha.

Corrente Primária (Valor primário do TC instalado no Multimedidor) Tensão Primária (Valor do primário do TP instalado no Multimedidor) Tensão Secundária (Valor do secundário do TP instalado no Multimedidor) Tipo de Rede Campo de Energia Reset de energia Reset de máximo e mínimo

Menu Comunicação

Esta opção permite acessar e modificar os parâmetros da rede RS 485. Para alterá-los é necessário habilitar a senha.

Baud Rate Endereço do Instrumento Reset das energias

Habilitar Configuração (Senha)

Para habilitar a senha é necessário selecionar a opção "SENHA". Entrando com o número **182** será possível habilitar a configuração local. Selecione a opção Senha através das teclas " ∇ (Retornar)" e " Δ (Avançar)" e pressione a tecla "*" (Confirmar)". A tecla " Δ (Avançar)" seleciona o dígito e a tecla " ∇ (Retornar)" muda a casa decimal.

Figura 5 – Menu de Configuração

Exemplo para senha (Nota: A senha "182" não pode ser alterada.)

Através da tecla " Δ (Avançar)" selecione o dígito 1, aperte a tecla " ∇ (Retornar)" para mudar a casa, com a tecla " Δ (Avançar)" selecione o dígito 8, aperte novamente a tecla " ∇ (Retornar)" para mudar de casa, com a tecla " Δ (Avançar)" selecione o dígito 2. Aperte a tecla "* (Confirmar)" para confirmar a habilitação, o aparelho retornará então para o menu Configurar Instrumento.

Importante: Caso o teclado figue inativo por aproximadamente 630 segundos a configuração local será desabilitada e o aparelho retornará para o modo indicação, dessa forma não será possível alterar os parâmetros. Para configurar o usuário terá que entrar com a senha novamente.

Gráfico de barras

O gráfico de barras permite visualizar a porcentagem de carga em função da potência ativa por fase ou a corrente nominais. Os valores nominais podem ser configurados através do teclado frontal ou software. Além disso, a cada configuração dos valores do TP ou TC eles são recalculados automaticamente atribuindo os valores nominais da rede, por exemplo: Para uma primário de TC de 100A e tensão primária de 115V, o valor nominal para corrente será 100A e a potência nominal será 11.5kW. Porém, o usurário poderá estabelecer outros valores nominais de referência conforme a necessidade da instalação. No mesmo exemplo, usuário poderia definir após as configurações de TCs e TPs que a sua corrente não irá passar de 80A e a potência máxima é de 8kW e assim configurar estes valores como referências nominais para o gráfico.

A figura 6 apresenta a visualização do gráfico de barras, as barras 1,2 e 3 indicam as intensidades por fase. Neste exemplo, o valor nominal de potência é de 100W, a graduação (1) indica a porcentagem em relação ao valor nominal. No caso a fase 1 está com aproximadamente 125%, 2 com 100 e 3 com 50% do valor nominal.

Figura 6 - Gráfico de barras

1 Indicação da graduação em porcentagem

2 Variável vinculada ao gráfico (I para corrente e P para potência ativa). Para alterar a variável basta pressionar a tecla "*" na telas de medição.

3 Valor do gráfico nas fase 1, 2 e 3

4.1.1-Menu Configurar

Este menu permite configurar os parâmetros da rede, é importante, para a correta indicação, que sejam configurado os valores do primário do TC, primário e secundário do TP.

Figura 7 – Menu configurar

Corrente Primária (PRIMARIO TC.)

Com a configuração local habilitada, através da tecla LOOP " \Box ", acesse a opção "Configurar" e navegue até a opção "PRIMARIO TC" através das teclas " ∇ " ou" Δ ", confirme "*" e siga as instruções abaixo:

Ajuste a corrente primária do TC com as teclas:

" Δ " seleciona o dígito de 0... 9 + (Ponto), " ∇ "desloca o dígito atual para esquerda (**1** +" ∇ " =1**0** + " ∇ " = 10**0** + " ∇ " =100**0**)

Aperte a tecla "*" e ajuste a unidade com a tecla "∆" kA ou A "*" para finalizar ou "⊡" para sair. Para configurar com casa decimal, basta digitar o (s) primeiro (s) algarismos antes do ponto decimal e no posição do ponto decimal após percorrer 0....9, aparecerão os algarismos com ponto decimal.

Exemplo para 1200 A

Através da tecla " Δ " selecione o dígito 1, aperte a tecla " ∇ " e mude de casa, com a tecla " Δ " selecione o dígito 2, aperte a tecla " ∇ " para mudar de casa, com a tecla " Δ " selecione o dígito 0, aperte a tecla " ∇ " para mudar de casa selecione o dígito 0, aperte a tecla " \times " e selecione a unidade (kA ou A), através das teclas " Δ " ou " ∇ ", em seguida aperte a tecla "*" para confirmar a configuração.

Figura 7 – Configurar Corrente Primária

Tensão Primária (PRIMARIO TP)

Com a configuração local habilitada, através da tecla LOOP " \Box ", acesse a opção "Configurar" e navegue até a opção "PRIMARIO TP" através das teclas " ∇ " ou" Δ ", confirme "*" e siga as instruções abaixo:

Ajuste a Tensão primária do TC com as teclas:

" Δ " seleciona o dígito de 0... 9 + (Ponto), " ∇ " desloca o dígito atual para esquerda (**1** +" ∇ " =1**0** + " ∇ " = 10**0** + " ∇ " =100**0**)

Aperte a tecla "∗" e ajuste a unidade com a tecla "∆" kV ou V "∗" para finalizar ou "□" para sair.

Exemplo para 13.80KV

Através da tecla " Δ " selecione o dígito 1, aperte a tecla " ∇ " e mude de casa, com a tecla " Δ " selecione o dígito 3, aperte a tecla " ∇ " para mudar de casa, com a tecla " Δ " selecione o ponto decimal, aperte a tecla " ∇ " para mudar de casa selecione o dígito 8, aperte a tecla " ∇ " para mudar de casa selecione o dígito 8, aperte a tecla " ∇ " para mudar de casa selecione a unidade (KV), através das teclas " Δ " ou " ∇ ", em seguida aperte a tecla "*" para confirmar a configuração

Figura 8 – Configurar Tensão Primária

Tensão Secundária (SECUNDARIO TP)

Com a configuração local habilitada, através da tecla LOOP " \Box ", acesse a opção "Configurar" e navegue até a opção "SECUNDARIO TP" através das teclas " ∇ " ou" Δ ", confirme "*" e siga as instruções abaixo:

Ajuste a Tensão primária do TC com as teclas: " Δ " seleciona o dígito de 0... 9 + (Ponto), " ∇ "desloca o dígito atual para esquerda (**1** + " ∇ " =1**0** + " ∇ " = 10**0** + " ∇ " =100**0**) Aperte a tecla "*" para finalizar ou " \Box " para sair.

Figura 9 - Configurar Tensão Secundária

Tipo de Rede

Com a configuração local habilitada através da tecla LOOP " \square ", acesse a opção "Configurar" e navegue até a opção "Tipo de Rede" através das teclas " ∇ " ou " Δ " confirme "*" e siga as instruções abaixo:

" ∇ " ou " Δ " Selecione o tipo de rede instalada:

4.3E: Rede trifásica com 3 TCs e 4 fios (três fases e neutro)4.1E: Rede trifásica com 1TC e 4 fios(três fases e neutro)3. 3E: Rede trifásica com 3 TCs (sem neutro)

- 3. 3E. Rede Infasica com 3 TCs (sem neutro)
- 3.2E: Rede trifásica do 2 TCs (sem neutro)
- 3.1E: Rede trifásica com 1 Tc (sem neutro)
- 1.1E: Rede monofásica

"*" Confirme

Campo de Energia

Reset de energia (RESET DE ENERGIA)

Esta função zera os registros de energia ativa a reativa.

Com a configuração local habilitada através da tecla LOOP"C3", acesse a opção "Configurar" e navegue através das teclas " ∇ " ou " Δ "até a opção "kWh = 0 e kVarh = 0" e confirme "*"

Reset de energia (RESET MAX MIN)

Esta função zera os registros de máximo e mínimo de todas as variáveis.

Com a configuração local habilitada através da tecla LOOP" \square ", acesse a opção "Configurar" e navegue através das teclas " ∇ " ou " Δ "até a opção "RESET MAX MIN" e confirme "*"

Reset para configurações de Fábrica

Para resetar os parâmetros do instrumento para as configurações de fábrica acesse o menu, através da tecla "Loop", e selecione a opção "SENHA", através da tecla "Avançar" ou "Retornar e pressione a tecla "Confirmar". Logos após, entre com a senha "364" conforme o exemplo abaixo:

Exemplo para senha (Nota: A senha "364" não pode ser alterada.)

Através da tecla " Δ (Avançar)" selecione o dígito 3, aperte a tecla " ∇ (Retornar)" para mudar a casa, com a tecla " Δ (Avançar)" selecione o dígito 6, aperte novamente a tecla " ∇ (Retornar)" para mudar de casa, com a tecla " Δ (Avançar)" selecione o dígito 4. Aperte a tecla " \ast (Confirmar)" para confirmar a habilitação, o aparelho irá reiniciar com as configurações de fábrica.

Importante: Caso a senha seja utilizada, o multimedidor será configurado com os seguintes parâmetros: Primário TC: 5,000A Primário TP: 254 V Secundário TP: 254 V Tipo de rede: 4N3E Campo de Energia: 9999999kWh Endereço: 1 Baud Rate: 9600 Byte: 8n2

Será necessário reconfigurar o instrumento novamente, TC, TP, Endereço e etc.

4.1.2-Menu Comunicação

Este menu permite configurar os parâmetros para a configuração.

Baud Rate

Com a configuração local habilitada através da tecla LOOP"C3", acesse a opção "RS485" e navegue até a opção "Baud Rate" através das teclas até a opção "kWh = 0 e kVarh = 0", confirme "*" e siga as instruções abaixo:

"∇" ou "Δ" Selecione o baud rate.
 19200
 9600
 4800
 "*" Confirme

Endereço

Com a configuração local habilitada através da tecla LOOP" \Box ", acesse a opção "RS485" e navegue até a opção "Endereço" através das teclas " ∇ " ou " Δ ", confirme "*" e siga as instruções abaixo:

"∆" Selecione 0...9 "V" Desloca o número para a esquerda

Atenção: O endereço deve estar entre 1....255

<u>Byte</u>

Com a configuração local habilitada através da tecla LOOP" \square ", acesse a opção "RS485" e navegue até a opção "Byte" através das teclas " Δ " ou " ∇ ", confirme "*" e siga as instruções abaixo:

" ∇ " ou " Δ " Selecione o formato do byte.

8,n,2 – Sem paridade com 2 Stop Bits

8,E,1 – Paridade par 1 Stop Bit

8,0,1 – Paridade impar 1 Stop Bit

8,n,1 – Sem paridade 1 Stop Bit

"*" Confirme

4.1.3-Menu Gráfico

Esta opção permite configurar os valores nominais do gráfico de barras. É possível utilizar os valore nominais gerados pela configuração de TC e TP (verificar item "Gráfico de Barras" do manual) ou configurar manualmente conforme a aplicação.

Corrente nominal (I NOMINAL)

Valor configurado para a corrente nominal, pode ser alterado com a configuração local habilitada. O procedimento de configuração é o mesmo utilizado para configurar os valores primários de TC e TP (configurar valor e grandeza A ou kA).

Potência nominal (P NOMINAL)

Valor configurado para a potência ativa nominal, pode ser alterado com a configuração local habilitada. O procedimento de configuração é o mesmo utilizado para configurar os valores primários de TC e TP (configurar valor e grandeza W, kW ou MW).

4.1.4-Menu Sair

<u>Sair</u>

Para retornar à tela de indicações pressione a tecla LOOP "
: e acesse a opção "Sair".

**" Confirme

Após aproximadamente 1 minuto sem pressionar uma tecla no menu o instrumento retorna automaticamente para a tela de medição.

5. Utilização através do Software IBIS_cnf

5.1- Configuração Básica

Para configurar o instrumento através do software é necessário que esteja conectado em um computador através de um conversor 485/232 (CRS 50). Para o perfeito funcionamento inicialmente certifique que as conexões da rede estão corretas e que há uma porta serial (COM) disponível.

1- Inicialmente deve-se estabelecer a conexão acessando no Menu a opção "Conexão" conforme a figura 6.

🔎 Progra	ama de Confi	guração			
Conexão	Instrumento	IDM G5	Opções	Sair	

Figura 10 - Software de Configuração

2- Selecione a opção "Definição da Conexão". Escolha a comunicação através da interface RS 485; é preciso entrar com o endereço do instrumento, baud rate e formato do byte, estas informações podem ser acessadas no próprio instrumento (verificar o capítulo 4).

	nição de Conexão	_ 0
Com	unicação	
С	RS 232 Comunicação Loca	ł
¢	RS 485 Comunicação atrav	és da Rede
Port	з	
С	COM 1	12
C	соміз сок	1.4
0	19200 © 9600 (2400 © 1200 (° 4800 ° 600
0	2400 1200 0	C 600
Byte	0.00	6/3
. (9)	8 e 1 Com paridade 2 Stops	Bus
0	0,6,1 Com panpade 1 Stop 1	DIC .
00	8.o.1 Com paridade 1 Stop I	Bit

Figura 11 - Definição da Conexão

3- Selecionar o modelo do instrumento (IDM G5) através do menu "Instrumento"

🔑 Programa de Configuração	
Conexão Instrumento IDM 65 Opções Sair	
Indicação 🔸 Indicação 1	
Configurar Campos Indicação 2	
Configurar Serial Indicação 3	
Harmonicos Granco	
Forma de Onda	

Figura 12 - Menu do instrumento

4- Acessar o menu "Opções" - "Senha" e entrar com a senha de configuração "cnf".

- Senha	

1	

Figura 13 - Senha

5- Acessar no menu a opção "Configurar Campos"

Esta opção inicialmente irá mostrar os valores já configurados, para alterá-los é preciso habilitar a senha "cnf".

Entrar com os valores de Configuração de TCs, tipo de rede e campo de energia. Também possível alterar os valores nominais do gráfico de barras (verificar item "Gráfico de Barras" do manual) conforme se deseja ou utilizar o botão "**Valor Padrão**" que realiza os cálculos em função dos valores configurados para TC e TP.

💐 Configurar	×
Corrente ✓ Possui TC Corrente Primária Corrente Secundária	Tensão Possui TP Tensão Primária 254 Tensão Secundária 254
Campo de Energia	Tipo de Rede Trifásico 4.3E (4fios e 3TCs) Trifásico 3.3E C Trifásico 3.1E Trifásico 3.2E C Monofasico
┌─ Gráfico de barras	
Corrente nominal 100	Grandeza I ⊙ A O kA Valor Padrão
Potência nominal 2000	Grandeza P ● W ● KW ● MW
KWh = 0	onfigurar <u>F</u> echar

Figura 14 – Menu Configurar Campos

O botão "**kWh = 0**" faz o reset de energia ativa, reativa e aparente.

5- Pressionar o botão "Configurar" para finalizar as configurações.

5.2- Indicações

Indicação 1

Permite visualizar as variáveis medidas, forma de onda e o diagrama fasorial. O botão "**Definir Histórico**" abre a tela para a seleção de variáveis e definição do tempo de amostragem. Para iniciar o histórico basta pressionar o botão "**Iniciar Histórico**", para finalizar utilizar o botão "**Fechar Histórico**". O arquivo será salvo no formato .csv.

Indicação 1											×
Tensão F1	7,8	kV	Corrente 2	4,352	kA	Pot S2	35,2	MVA	Pot Q1	3,6	MVar
Tensão F2	8,1	kV	Corrente 3	4,537	kA	Pot S3	36,3	MVA	Pot Q2	4,2	MVar
Tensão F3	<mark>0,8</mark>	kV	Corrente N	0,276	kA	Pot ST	106,6	MVA	Pot Q3	4,0	MVar
Tensão L1	13,7	kV	Angulo I 1	-4,1	Deg	Pot P1	34,9	MW	Pot QT	11,8	MVar
Tensão L2	13,6	kV	Angulo I 2	115,8	Deg	Pot P2	35,0	MW	Cos Phi 1	0,995	[]
Tensão L3	14,0	kV	Angulo I 3	-122,9	Deg	Pot P3	36,1	MW	Cos Phi 2	0,993	<u>[]</u>
Angulo U1	0,0	Deg	THD 11	1,0	THD %	Pot PT	106,0	MW	Cos Phi 3	0,994	[]
Angulo U2	122,1	Deg	THD 12	1,9	THD %	Ftr Pot 1	0,995	[]	Cos Phi T	1,000	[]
Angulo U3	-117,2	Deg	THD 13	1,2	THD %	Ftr Pot 2	0,993	- []	Energ At C	544787	k₩h
THD U1	3,7	%	Def U,I 1	-4,1	Deg	Ftr Pot 3	0,994	[]	<mark>Energ Rea C</mark>	52475	kVArh
THD U2	4,5	<mark>%</mark>	Def U,I 2	-6,3	Deg	Ftr Pot T	0,994	[]	Energ At F	0	k₩h
THD U3	4,0	%	Def U,I 3	-5,7	Deg	<mark>Dem ST</mark>	106,8	MVA	<mark>Energ Rea F</mark>	47516	kVArh
Frequencia	59,98	Hz	Def U,I T	-1,5	Deg	<mark>Dem PT</mark>	106,1	MW	Energ Ap	553888	kVAh
Corrente 1	4,493	kA	Pot S1	35,1	MVA	<mark>Dem QT</mark>	11,8	MVar			
			Seleção de	Gráfico de	e Tensão	Seleção o	le Gráfico	de Corren	ie	Fe	char
Define Historico	Inicia Historico	Fechar Historico	IF1 🔽 IF	2 🔽	IF3 🔽	UF1 🔽	UF2 🔽	UF3 🔽			
									13:31	9/11/	2011

Figura 15 – Indicação 1

As opções "Seleção de Gráfico de Tensão" e "Seleção de Gráfico de Corrente" possibilitam selecionar qual grandeza e fase será apresentada a forma de onda.

Indicação 2

ndicação 2											
Tensão F1	7,8	kV	Corrente 2	4,354	kA	Pot S2	35,3	MVA	Pot Q1	3,6	MVar
Tensão F2	8,1	kV	Corrente 3	4,543	kA	Pot S3	36,4	MVA	Pot Q2	4,2	MVar
Tensão F3	8,0	kV	Corrente N	0,276	kA	Pot ST	106,7	MVA	Pot Q3	4,0	MVar 🛛
Tensão L1	13,7	kV	Angulo I 1	-3,4	Deg	Pot P1	34,8	MW	Pot QT	11,9	MVar
Tensão L2	13,6	kV	Angulo I 2	115,4	Deg	Pot P2	35,0	MW	Cos Phi 1	0,995	[]
Tensão L3	14,1	kV	Angulo I 3	-121,5	Deg	Pot P3	36,2	MW	Cos Phi 2	0,993	[]
Angulo U1	0,0	Deg	THD 11	2,1	THD %	Pot PT	106,1	MW	Cos Phi 3	0,994	[]
Angulo U2	121,9	Deg	THD 12	1,8	THD %	Ftr Pot 1	0,995	[]	Cos Phi T	1,000	[]
Angulo U3	-115,9	Deg	THD 13	1,2	THD %	Ftr Pot 2	0,993	[]	Energ At C	547503	k₩h
THD U1	4,4	%	Def U,I 1	-3,4	Deg	Ftr Pot 3	0,994	[]	<mark>Energ Rea C</mark>	52778	kVArh
THD U2	4,4	%	Def U,I 2	-6,5	Deg	Ftr Pot T	0,994	[]	Energ At F	0	<mark>k₩h</mark>
THD U3	3,8	%	Def U,I 3	-5,6	Deg	<mark>Dem ST</mark>	106,6	MVA	<mark>Energ Rea F</mark>	47516	kVArh
Frequencia	60,02	Hz	Def U,I T	-1,4	Deg	Dem PT	106,0	MW	Energ Ap	556613	kVAh
Corrente 1	4,490	kA	Pot S1	35,0	MVA	<mark>Dem QT</mark>	11,8	MVar			
						1					
									13:33	9/11/	2011

Figura 16 – Indicação 2

Indicação 3

Permite visualizar e gerar histórico. Para gerar o histórico basta selecionar a opção "**Histórico**", selecionar as variáveis, tempo de amostragem e clicar em Iniciar. Para finalizar, basta clicar em "**Finalizar**", o arquivo será salvo no formato .csv.

Indicação 3	×
Histórico Iniciar Finalizar	
Potência Ativa Potência Reativa Potência Aparente Fator de Potência Ângulo [Graus]	
P1 36,8 MW Q1 3,7 Mvar S1 37,0 MVA PF1 0,995 Ind Phi1 -4,2	
P2 36,3 MW Q2 4,1 Mvar S2 36,6 MVA PF2 0,994 Ind Phi2 -6,3	
P3 38,5 MW Q3 4,1 Mvar S3 38,7 MVA PF3 0,994 Ind Phi3 -5,7	
PT 111,7 MW QT 12,0 Mvar ST 112,3 MVA PFT 0,994 Ind Phit -1,5	
Corrente Tensão de Fase Tensão de Linha Demanda Corrente Demanda Potên	cia –
II 4,636 kA UI 8,0 kV U12 14,0 kV II 4,585 kA Pt 110,6 M	w
I2 4,445 kA U2 8,2 kV U23 13,9 kV I2 4,401 kA Qt 11,9 M	var
I3 4,724 kA U3 8,2 kV U31 14,3 kV I3 4,682 kA St 111,3 M	VA
Energia Ativa Frequência	
Consumida Fornecida Consumida Fornecida 59,99	łz
284853 kWh 0 kWh 24005 kvarh 47516 kvarh Earar Eec	har

Figura 17 – Indicação 3

Harmônicas

Através do software é possível visualizar o gráfico e tabela de harmônicas por fase para corrente e tensão.

Figura 18 - Gráfico de Harmônicas

Nr	% U1	Nr	% U1	Nr	% U1	Nr	% U1
1	100,0	21	0,8	41	0,3	61	0,4
2	0,7	22	0,7	42	0,3	62	0,3
3	0,7	23	0,8	43	0,7	63	0,7
4	0,5	24	0,4	44	0,3		
5	0,7	25	0,7	45	0,4		
6	0,7	26	0,4	46	0,3		
7	1,0	27	0,8	47	0,3		
8	0,0	28	0,3	48	0,3		
9	1,0	29	0,7	49	0,3	Ter	nsão fase 1
10	0,7	30	0,5	50	0,3		
11	0,5	31	0,7	51	0,5	⊂ Ter	nsão fase 2
12	0,8	32	0,0	52	0,0	O Ter	nsão fase 3
13	0,4	33	0,4	53	0,3		
14	0,7	34	0,5	54	0,4	C Cor	rente fase 1
15	1,1	35	U,4	55	0,3	C Cor	rente fase 2
16	0,0	36	0,4	56	0,1	~ ~	
17	U,1	37	U,3	5/	0,4	C Cor	rente fase 3
18	U,8	38	U,5	58	0,4		
19	U,8 0 F	39	U, J	59	U, J		
20	0,5	40	0,0	60	0,3		Fechar

20

Captura de forma de onda

Esta opção permite visualizar as formas de onda das três fases para corrente ou tensa.

Figura 20 - Forma de onda

6. Leitura de através de software supervisório

Para realizar a leitura das grandezas elétricas através de um software supervisório é preciso acessar a tabela de registros da tabela 1 e realizar as conversões.

Registros			Tipo de dado	Tipo de dado	Descrição
Atual	Máx	Min		-	
71100	max				
100	190	230	4000H = Valor nominal	Leitura	Tensão entre L1 e Neutro
101	191	231	4000H = Valor nominal	Leitura	Tensão entre L2 e Neutro
102	192	232	4000H = Valor nominal	Leitura	Tensão entre L3 e Neutro
103	193	233	4000H = Valor nominal	Leitura	Tensão entre L1 e L2
104	194	234	4000H = Valor nominal	Leitura	Tensão entre L2 e L3
105	195	235	4000H = Valor nominal	Leitura	Tensão entre L3 e L1
106	196	236	4000H = Valor nominal	Leitura	Corrente I1
107	197	237	4000H = Valor nominal	Leitura	Corrente I2
108	198	238	4000H = Valor nominal	Leitura	Corrente I3
109	199	239	4000H = Valor nominal	Leitura	Corrente de neutro
110	200	240	4000H = Valor nominal	Leitura	Potência Ativa P1
111	201	241	4000H = Valor nominal	Leitura	Potência Ativa P2
112	202	242	4000H = Valor nominal	Leitura	Potência Ativa P3
113	203	243	4000H = Valor nominal	Leitura	Potência Ativa Total PT
114	204	244	4000H = Valor nominal	Leitura	Potência Reativa Q1
115	205	245	4000H = Valor nominal	Leitura	Potência Reativa Q2
116	206	246	4000H = Valor nominal	Leitura	Potência Reativa Q3
117	207	247	4000H = Valor nominal	Leitura	Potência Reativa Total QT
118	208	248	4000H = Valor nominal	Leitura	Potência Aparente S1
119	209	249	4000H = Valor nominal	Leitura	Potência Aparente S2
120	210	250	4000H = Valor nominal	Leitura	Potência Aparente S3
121	211	251	4000H = Valor nominal	Leitura	Potência Aparente Total ST
122	212	252	4000H = Valor nominal	Leitura	Fator de potência 1
123	213	253	4000H = Valor nominal	Leitura	Fator de potência2
124	214	254	4000H = Valor nominal	Leitura	Fator de potência 3
125	215	255	4000H = Valor nominal	Leitura	Fator de potência T
126	216	256	2000H = 50 Hz	Leitura	Frequência
127			1 = 1 MWh	Leitura e escrita	Energia consumida em MWh *1
128			1 = 1 kWh	Leitura e escrita	Energia consumida em kWh *1
129			1 = 1 Wh	Leitura e escrita	Energia consumida em Wh *1
130			1 = 1 Mvarh	Leitura e escrita	Energia consumida em Mvarh *1
131			1 = 1 kvarh	Leitura e escrita	Energia consumida em kvarh *1
132			1 = 1 varh	Leitura e escrita	Energia consumida em varh *1
133			1 = 1 MWh	Leitura e escrita	Energia fornecida em MWh *1
134			1 = 1 kWh	Leitura e escrita	Energia fornecida em kWh *1
135			1 = 1 Wh	Leitura e escrita	Energia fornecida em Wh *1
136			1 = 1 Mvarh	Leitura e escrita	Energia fornecida em Mvarh *1
137			1 = 1 kvarh	Leitura e escrita	Energia fornecida em kvarh *1
138			1 = 1 varh	Leitura e escrita	Energia fornecida em varh *1
139	217	257	4000H = 360	Leitura	Angulo Phi 1
140	218	258	4000H = 360	Leitura	Angulo Phi 2
141	219	259	4000H = 360	Leitura	Angulo Phi 3
142	220	260	4000H = 360	Leitura	Angulo Phi t
143	221	261	4000H = Valor nominal	Leitura	Demanda de Corrente I1
144	222	262	4000H = Valor nominal	Leitura	Demanda de Corrente I2
145	223	263	4000H = Valor nominal	Leitura	Demanda de Corrente I3
146	224	264	4000H = Valor nominal	Leitura	Demanda de Potência Ativa

Tabela 2 – Registros Modbus

147	225	265	4000H = Valor nominal	Leitura	Demanda de Potência Reativa
148	226	266	4000H = Valor nominal	Leitura	Demanda de Potência Aparente
149			4000H = Valor nominal	Leitura	Angulo Tensão da fase 1
150			4000H = Valor nominal	Leitura	Angulo Tensão da fase 2
151			4000H = Valor nominal	Leitura	Angulo Tensão da fase 3
152			4000H = Valor nominal	Leitura	Angulo Corrente da fase 1
153			4000H = Valor nominal	Leitura	Angulo Corrente da fase 2
154			4000H = Valor nominal	Leitura	Angulo Corrente da fase 3
155	313	391	4000H = Valor nominal	Leitura	Cos Phi 1
156	314	392	4000H = Valor nominal	Leitura	Cos Phi 2
157	315	393	4000H = Valor nominal	Leitura	Cos Phi 3
158	316	394	4000H = Valor nominal	Leitura	Cos Phi T
159	317	395	4000H = Valor nominal	Leitura	THD IEEE U1
160	318	396	4000H = Valor nominal	Leitura	THD IEEE U 2
161	319	397	4000H = Valor nominal	Leitura	THD IEEE U 3
162	320	398	4000H = Valor nominal	Leitura	THD IEEE I1
163	321	399	4000H = Valor nominal	Leitura	THD IEEE I2
164	322	400	4000H = Valor nominal	Leitura	THD IEEE I3
165			1 = 1MVAh	Leitura	Energia Aparente MVAh
166			1 = 1kVAh	Leitura	Energia Aparente kVAh
167			1 = 1VAh	Leitura	Energia Aparente VAh

Onde:

Registro Atual: Valor medido atual Registro Máximo: Valor máximo medido Registro Mínimo: Valor mínimo medido

6.1- Fatores de conversão

Os valores configurados nominais podem ser obtidos através da leitura dos parâmetros de configuração dos instrumentos que pode se feito pelo acesso local (item 4 deste documento) ou pelo software (item 5).

Fórmula Básica

$$V_{Medido} = \frac{V_{BufferModbus} \cdot V_{No\min al}}{16384} \quad (1)$$

Onde:

 V_{Medido} = Valor da leitura em unidades de engenharia

 $V_{BufferModbus}$: Valor decimal (2 bytes em complemento de dois) obtido através da rede Modbus.

Tensão Fase-Neutro

Utilizar a equação 1.

 $V_{No \min al}$ = Valor configurado do primário do TP

• Tensão Fase-Fase

Utilizar a equação 1.

 $V_{Nomin al}$ = Valor configurado do primário do TP

Corrente e demanda de corrente

Utilizar a equação 1. $V_{Nomin al} =$ Valor configurado do primário do TC

• Potência (Ativa, reativa e aparente)

Utilizar a equação 1.

 $V_{No \min al}$ = (Primário do TP fase-neutro) x (Primário do TC)

Atenção: Este valor é sinalizado, dessa forma deve-se obter o módulo fazendo o complemento de 2 dos valor obtido do buffer modbus.

• Potência total e demanda de potência (Ativa, reativa e aparente)

Utilizar a equação 1.

 $V_{No \min al} = 3 \text{ x}$ (Primário do TP fase-neutro) x (Primário do TC) Atenção: Este valor é sinalizado, dessa forma deve-se obter o módulo fazendo o complemento de 2 dos valor obtido do buffer modbus.

• Fator de potência e cos phi

Utilizar a equação 1.

 $V_{No\min al} = 1$

Atenção: Este valor é sinalizado, dessa forma deve-se obter o módulo fazendo o complemento de 2 dos valor obtido do buffer modbus.

• Frequência

Utilizar a equação 1. $V_{Nomin al} = 100$

Energia

Ativa

$$V_{Medido} = \frac{(\text{Registro Wh})}{1000} + \text{Registro kWh} + 1000 \times \text{Registro MWh}$$

Utilizando esta fórmula o valor medido já está no padrão do Campo de Energia escolhido. Ou seja, se o Campo de Energia é 9999999 kWh V_{Medido} está em kWh.

Reativa

$$V_{Medido} = \frac{(\text{Registro VArh})}{1000} + \text{Registro kVArh} + 1000 \times \text{Registro MVarh}$$

Utilizando esta fórmula o valor medido já está no padrão do Campo de Energia escolhido. Ou seja, se o Campo de Energia é 9999999 kWh V_{Medido} está em kWh.

Aparente

$$V_{Medido} = \frac{(\text{Registro VAh})}{1000} + \text{Registro kVAh} + 1000 \times \text{Registro MVah}$$

Utilizando esta fórmula o valor medido já está no padrão do Campo de Energia escolhido. Ou seja, se o Campo de Energia é 9999999 kWh V_{Medido} está em kWh.

• Ângulos

Utilizar a equação 1. $V_{Nomin al} = 360$

• THD

Utilizar a equação 1. $V_{Nomin al} = 100\%$

7. Problemas comuns

7.1 O instrumento não liga

Verifique se todas as ligações estão corretas (item 2 deste documento) e se os valores de entrada estão dentro dos limites do aparelho.

7.2 O instrumento não registra valores

- 1. Verifique se a tensão e corrente de entrada estão dentro do limites especificados na ficha técnica e na etiqueta do instrumento. As correntes e tensões aplicadas devem ser superiores a 5% do fundo de escala do medidor.
- 2. Verifique com um voltímetro se existe tensão entre os terminais:
 - a. 2 e 11 para fase R
 - b. 5 e 11 para fase S
 - c. 8 e 11 para fase T
- 3. Caso um dos valores esteja incoerente com o esperado verifique a ligação e os fusíveis do circuito
- 4. Verifique com um alicate amperímetro se as correntes chegam nos terminais 1, 3 e 7 do multimedidor.
 - a. Caso a corrente seja nula verificar se os bornes de aferição estão abertos e a instalação correta
 - b. Caso a corrente seja inferior a 5% do fundo de escala procure aumentar o valor da corrente primária para que o instrumento possa realizar a leitura correta.

7.3 Os instrumento apresenta valores incoerentes

- 1. Verifique se todos os parâmetros estão configurados corretamente (item 4 e 5 deste documento)
- Verifique se as tensões e correntes estão conectadas corretamente (item 2 deste manual)

 a. Normalmente para valores incoerentes de fator de potência há uma troca de
 - fase nas correntes, uma inversão de TC ou valores de medida inferior ao minímo de 5% do fundo de escala.
- Verifique se a tensão do medidor é maior ou igual à conectada a ele. Caso a tensão do medidor seja inferior à aquela conectada a mesma poderá saturar em um valor inferior ao real e até mesmo danificar o aparelho.

7.4 O instrumento não comunica corretamente

- 1- Certifique-se que todas as conexões estão corretas (item 3) e que os parâmetros da comunicação estão corretos (item 3 deste documento).
- 2- Verifique se a rede está corretamente instalada (item 3) e se não há inversão das conexões dos terminais A e B.
- 3- Verifique através do software IBIS (capitulo 5) para assegura-se que o problema não está no sistema supervisório;

7.5 O instrumento apresenta valores errados de energia

- 1- Verifique se todas as ligações estão corretas (item 2 deste documento) e se os valores de entrada estão dentro dos limites do aparelho. Por exemplo, TCs superdimensionados, tensão do instrumento inferior a utilizada. Lembre-se também que os multimedidores podem medir correntes com valores superiores a 5% do valor nominal.
- 2- Verifique se todos os parâmetros estão configurados corretamente (item 4 e 5 deste documento)
- 3- Verifique se o Campo de Energia está bem dimensionado para a aplicação (item 4 deste documento).
- 4- Verifique se não há TCs invertidos

4.1 Verifique se o sinal da potência está coerente para a aplicação (positivo para consumidor, negativo para gerador)

4.2 Verifique se a soma das potências, por fase, é igual à potência total. Caso não seja existe(m) TC(s) invertido(s). Verificar a instalação (item 2 deste manual)

5- Verifique se os valores de potência por fase e total estão coerentes com a aplicação

8 Dimensões e diagramas de conexões

Dimensões em mm

NOTA: A ABB reserva os direitos de fazer mudanças técnicas ou de conteúdo neste documento sem notificação. Com relação as ordens de Compra, deverá prevalecer o acordado entre as partes. A BRABB não aceita qualquer responsabilidade sobre possíveis falta de informação ou erro deste documento. Rev 1.00 CopyRight© 2012 Todos os direitos reservados.

V02

