

e!COCKPIT Application Note

Building

Automation

WAGO-I/O-
PRO V2.3

WAGO-I/O-SYSTEM 750
WagoAppCloud

Version 1.4.5

2 e!COCKPIT application note – WagoAppCloud

 WAGO-I/O-SYSTEM 750

 Version 1.4.5

© 2019 by WAGO Kontakttechnik GmbH & Co. KG

All rights reserved.

WAGO Kontakttechnik GmbH & Co. KG

Hansastraße 27

D-32423 Minden

Tel.: +49 (0) 571/8 87 – 0

Fax: +49 (0) 571/8 87 – 1 69

E-Mail: info@wago.com

Web: http://www.wago.com

Technical Support

Tel.: +49 (0) 571/8 87 – 4 45 55

Fax: +49 (0) 571/8 87 – 84 45 55

E-Mail: support@wago.com

Every conceivable measure has been taken to ensure the accuracy and

completeness of this documentation. However, as errors can never be fully

excluded, we always appreciate any information or suggestions for improving the

documentation.

We wish to point out that the software and hardware terms, as well as the

trademarks of companies used and/or mentioned in the present document are

generally protected by trademark or patent.

../../../../../../Users/u010663/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/DZ53LP8C/info@wago.com
http://www.wago.com/
../../../../../../Users/u010663/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/DZ53LP8C/support@wago.com

e!COCKPIT application note – WagoAppCloud 3

WAGO-I/O-SYSTEM 750 Description

Version 1.4.5

Notes about this Documentation

Copyright

This documentation, including all figures and illustrations contained therein, is

subject to copyright protection. Any use of this documentation that infringes upon

the copyright provisions stipulated herein is prohibited. Reproduction, translation,

electronic and phototechnical filing/archiving (e.g., photocopying), as well as any

amendments require the written consent of WAGO Kontakttechnik GmbH & Co.

KG, Minden, Germany. Non-observance will entail the right of claims for

damages.

WAGO is a registered trademark of WAGO Verwaltungsgesellschaft mbH.

Number Notation

Table 1: Number Notation

Number code Example Note

Decimal 100 Normal notation

Hexadecimal 0x64 C notation

Binary '100'

'0110.0100'

In quotation marks, nibble separated with

dots (.)

Font Conventions

Table 2: Font Conventions

Font type Indicates

italic Names of paths and data files are marked in italic-type.

e.g.: C:\Programme\WAGO-I/O-CHECK

Menu Menu items are marked in bold letters.

e.g.: Save

> A greater-than sign between two names means the selection of a

menu item from a menu.

e.g.: File > New

Input Designation of input or optional fields are marked in bold letters,

e.g.: Start of measurement range

“Value” Input or selective values are marked in inverted commas.

e.g.: Enter the value “4 mA” under Start of measurement range.

[Button] Pushbuttons in dialog boxes are marked with bold letters in square

brackets.

e.g.: [Input]

[Key] Keys are marked with bold letters in square brackets.

e.g.: [F5]

4 e!COCKPIT Anwendungshinweis – WagoAppCloud

Description WAGO-I/O-SYSTEM 750

 Version 1.4.5

Symbols

Personal Injury!

Indicates a high-risk, imminently hazardous situation which, if not avoided, will

result in death or serious injury.

Personal Injury Caused by Electric Current!

Indicates a high-risk, imminently hazardous situation which, if not avoided, will

result in death or serious injury.

Personal Injury!

Indicates a moderate-risk, potentially hazardous situation which, if not avoided,

could result in death or serious injury.

Personal Injury!

Indicates a low-risk, potentially hazardous situation which, if not avoided, may

result in minor or moderate injury.

Damage to Property!

Indicates a potentially hazardous situation which, if not avoided, may result in

damage to property.

Damage to Property Caused by Electrostatic Discharge (ESD)!

Indicates a potentially hazardous situation which, if not avoided, may result in

damage to property.

Important Note!

Indicates a potential malfunction which, if not avoided, however, will not result in

damage to property.

e!COCKPIT application note – WagoAppCloud 5

WAGO-I/O-SYSTEM 750 Description

Version 1.4.5

Additional Information:

Refers to additional information which is not an integral part of this

documentation (e.g., the Internet).

Legal Bases

Subject to Change

WAGO Kontakttechnik GmbH & Co. KG reserves the right to make any

alterations or modifications that serve to increase the efficiency of technical

progress. WAGO Kontakttechnik GmbH & Co. KG owns all rights arising from

granting patents or from the legal protection of utility patents. Third-party

products are always mentioned without any reference to patent rights. Thus, the

existence of such rights cannot be excluded.

Personnel Qualification

The use of the product described in this document is exclusively geared to

specialists having qualifications in PLC programming, electrical specialists or

persons instructed by electrical specialists who are also familiar with the

appropriate current standards.

Moreover, the persons cited here must also be familiar with all of the products

cited in this document, along with the operating instructions. They must also be

capable of correctly predicting any hazards which may not arise until the products

are combined.

WAGO Kontakttechnik GmbH & Co. KG assumes no liability resulting from

improper action and damage to WAGO products and third-party products due to

non-observance of the information contained in this document.

6 e!COCKPIT Anwendungshinweis – WagoAppCloud

Description WAGO-I/O-SYSTEM 750

 Version 1.4.5

Limitation of Liability
This documentation describes the use of various hardware and software

components in specific example applications. The components may represent

products or parts of products from different manufacturers. The respective

operating instructions from the manufacturers apply exclusively with regard to

intended and safe use of the products. The manufacturers of the respective

products are solely responsible for the contents of these instructions.

The sample applications described in this documentation represent concepts, that

is, technically feasible application. Whether these concepts can actually be

implemented depends on various boundary conditions. For example, different

versions of the hardware or software components can require different handling

than that described here. Therefore, the descriptions contained in this

documentation do not form the basis for assertion of a certain product

characteristic.

Responsibility for safe use of a specific software or hardware configuration lies

with the party that produces or operates the configuration. This also applies when

one of the concepts described in this document was used for implementation of

the configuration.

WAGO Kontakttechnik GmbH & Co. KG is not liable for any actual

implementation of the concepts.

e!COCKPIT application note – WagoAppCloud 7

WAGO-I/O-SYSTEM 750 Description

Version 1.4.5

Table of Contents

Table of Contents ... 7

1 Description .. 8

1.1 Introduction ... 8
1.2 Overview ... 8
1.2.1 Operation mode .. 9
1.2.2 IEC Libraries .. 10

1.2.3 Linux Application ... 12

2 Used material .. 13

2.1 Libraries .. 13
2.2 Devices .. 13

2.3 Firmware and PLC library versions .. 13

3 IEC Application ... 14

3.1 Data transmission to cloud .. 14

3.1.1 Limitations .. 18
3.2 Command Handling .. 19

3.3 Online Change ... 20

4 Commissioning ... 22

4.1 General configuration .. 22
4.1.1 Establishing an Internet Connection to the PFC................................. 22
4.1.2 Ports Used for Cloud Connectivity... 23

4.1.3 Internet Connection via a Web Proxy Server 23
4.1.4 Activate Time Synchronsiation .. 24

4.2 Setup Cloud Connectivity ... 25

4.2.1 WAGO Cloud ... 25

4.2.2 Microsoft Azure.. 27
4.2.3 Amazon Web Services (AWS) ... 32

4.2.4 IBM Cloud .. 36
4.2.5 SAP IoT Services ... 41
4.2.6 Cache Mode .. 46

5 Appendix ... 49

5.1 Update a new version .. 49

5.1.1 Installing Linux Application... 49
5.1.2 IEC Libraries .. 51
5.2 SCADA System Ignition (Sparkplug) ... 53

5.2.1 Architecture .. 53
5.2.2 Configuration Cloud Connectivity with Ignition 55

5.2.3 Configuration in Ignition .. 55
5.2.4 PLC Application with Ignition ... 56

Examples: Policies for AWS ... 59
5.2.5 Policy without curtailment ... 59
5.2.6 Possible Policy for WAGO Protocol v1.0 .. 60
5.2.7 Possible Policy for WAGO Protocol v1.2 .. 61

8 e!COCKPIT Anwendungshinweis – WagoAppCloud

Description WAGO-I/O-SYSTEM 750

 Version 1.4.5

1 Description

In this day and age, it is always more important to make data from an industrial controller available in
a cloud. In this application note, the steps are explained how the PFC100/PFC200 – hereinafter
referred to as a PFC only – can be enabled to send data from the PLC program to a cloud service and
to receive commands from the cloud depending on the cloud service being used.

1.1 Introduction

The Industrial Internet of Things and Services (IoT) aims smarter products and applications by
collecting and understanding data provided by the “things” using internet and Cloud technology.

These things are typically the sensors, actors and other microprocessor equipped devices used for
automation. However, these devices typically don’t have internet interfaces. Thus, gateways are
required to connect those devices to the Cloud via the internet.

The WAGO Programmable Field Controller (PFC) is the perfect base for an Industrial Internet of
Things gateway. It can access data from most field protocols due the large variety of modules. It can
access the internet due to the built-in Ethernet and mobile interfaces (model depended).

Microsoft Azure and Amazon Web Services are Cloud platforms which provides services for the
implementation of IoT applications. It provides e.g. services to retrieve thousands of telemetry
messages per second, data archiving and analysis as well as web and mobile user interfaces for
visualization.

Cloud Connectivity enables a PLC program, which is running on the PFC, to communicate with such a
Cloud platform.

1.2 Overview

Following diagram gives an overview about the Cloud Connectivity

Figure 1-1: Overview about Cloud Connectivity

e!COCKPIT application note – WagoAppCloud 9

WAGO-I/O-SYSTEM 750 Description

Version 1.4.5

The Cloud Connectivity consists of IEC libraries (for e!Cockpit and Codesys 2.3) and related Linux
application, which is running on PFC as a daemon. The main features of both are described in the
following chapters.

The cloud application will not be described in this document. Most of the customers would implement
the cloud application by themselfes according to their special needs and with the help of the
documented message formats in the specification of the WAGO Protocol. There is an already an
existing cloud application named WAGO Cloud which can be used by the customers of WAGO.
WAGO Cloud is based on the Microsoft Azure Platform. Chapter 4 has a description about connecting
PFC to a cloud service.

1.2.1 Operation mode

Cloud Connectivity has following operation modes:

 WAGO Protocol

Enables a PLC program to capture and send its process data comfortably to the cloud
application. Furthermore the PLC can define and publish its custom commands. Later on the
cloud application can trigger the executions of those commands. WAGO Protocol can be used
for any cloud platform: currently it is already being used for WAGO Cloud.

The operation mode WAGO Protocol can be used with all selectable cloud platforms.

 Native MQTT

Here the PLC program turns to a “thing” (IoT) or rather MQTT-Client. It will retain the full
control and responsibility for every outgoing message and its format.

The operation mode Native MQTT is available for the following cloud platforms:

 Amazon Web Services (AWS)

 SAP IoT Services

 IBM Cloud

 MQTT AnyCloud

 Sparkplug

Sparkplug (Sparkplug payload B) is a specification of Cirrus Link in which the communication
of the MQTT messages is defined in more detail. The exact designation of the MQTT topics,
the structure and content of the MQTT payload and the sequence of message packages are
defined in the specification. By supporting the Sparkplug specification, data can be sent from
the PFC to SCADA systems such as Ignition. Process data can be recorded and configured in
the PLC program, similar to the operation mode WAGO protocol. Furthermore, commands can
also be defined in the PLC program and sent from the SCADA system to the PFC.

The Linux application ensures that the MQTT messages support the Sparkplug specification.

The operation mode Sparkplug is available for the following cloud platforms:

 Amazon Web Services (AWS)

 MQTT AnyCloud

It is not possible to use multiple operation modes simultaneously at runtime: that means the PLC
developer has to make a decision and make further implementation based on it.

Following diagram shows exemplary the usage of the operation modes.

https://s3.amazonaws.com/cirrus-link-com/Sparkplug+Topic+Namespace+and+State+ManagementV2.1+Apendix++Payload+B+format.pdf

10 e!COCKPIT Anwendungshinweis – WagoAppCloud

Description WAGO-I/O-SYSTEM 750

 Version 1.4.5

Figure 1-2: Overview operation modes

1.2.2 IEC Libraries

WagoAppCloud (for e!Cockpit) and WagoLibCloud (for Codesys2.3) are IEC 61131 libraries to be
used when implementing PLC programs for IoT scenarios. Within the libraries there are different
function blocks to be used for different operation mode.

Operation mode WAGO Protocol

Following example programs show the usage of IEC libraries:

 WagoAppCloud_FbCollectionLogger_Example1.ecp,
WagoLibCloud_FbCollectionLogger_Example1.pro

Variables of a PLC program are grouped into different collections. The values of variables are
sampled on a time cycle and forwarded to the cloud.

 WagoAppCloud_FbCommandListener_Example1.ecp,

WagoLibCloud_FbCommandListener_Example1.pro

Variables of a PLC program are grouped into different collections. The values of variables are
sampled and sent cyclicly to the cloud. PLC program also implements a custom command and
shows how it can be handled.

 WagoAppCloud_FbCollectionLogger_Example2.ecp,
WagoLibCloud_FbCollectionLogger_Example2.pro

Variables of a PLC program are grouped into different collections. Some values of variables
are sampled by certain event and sent to the cloud.

The operation mode WAGO Protocol used the following function blocks

 FbCollectionLogger

 FbCommandConfigurator

 FbCommandListener

 FbCommandResponder

 FbStatus_WagoProtocol

e!COCKPIT application note – WagoAppCloud 11

WAGO-I/O-SYSTEM 750 Description

Version 1.4.5

Operation mode Native MQTT

Note

Important note!

The operation mode Native MQTT is available for the PLC library

WagoAppCloud (e!Cockpit). WagLibCloud doesn’t support this operation

mode.

Following example programs show the usage of IEC libraries:

 WagoAppCloud_FbPublishMQTT_Example1.ecp

PLC program creates a primitive JSON document und publishes it via MQTT

 WagoAppCloud_FbSubscribeMQTT_Example1.ecp

PLC program subscribe data via MQTT from the cloud

The operation mode Native MQTT used the following function blocks

 FbPublishMQTT

 FbSubscribeMQTT

 FbStatus_NativeMQTT

Operation mode Sparkplug

The configuration of the data points in the IEC application in the operation mode Sparkplug is very
similar to that of the operation mode WAGO Protocol.

Response form a command (FbCommandResponder) is not supported by the Sparkplug specification
by the operation mode Sparkplug.

Following example programs show the usage of IEC libraries:

 WagoAppCloud_FbCommandListener_Sparkplug.ecp

Variables of a PLC program are grouped into different collections. Some values of variables
are sampled by certain event and sent to the cloud. PLC program also implements a custom
command and shows how it can be handled for the operation mode Sparkplug.

The operation mode Sparkplug used the following function blocks

 FbCollectionLogger

 FbCommandConfigurator

 FbCommandListener

 FbStatus_WagoProtocol

12 e!COCKPIT Anwendungshinweis – WagoAppCloud

Description WAGO-I/O-SYSTEM 750

 Version 1.4.5

1.2.3 Linux Application

The supported operation modes of Cloud Connectivity originate from the Linux Application.

The Linux Application is a deamon running on the PFC. It is responsible for data flow between PLC
program and cloud application. It is connected to the IEC Library using Inter-process communication
(IPC) and also communicates with the Cloud. Data transmission to the Cloud is done by using the
MQTT protocol and is encrypted using Transport Layer Security (TLS).

The Linux Application can be configured to connect different Cloud platforms which support the MQTT
protocol. The configuration is quite easy step by using the Web Based Management (WBM).

Operation mode is configurable there as well.

The Linux Application caches data coming from the PLC program to avoid data loss in case network
connection to the Cloud got interrupted. Linux Application takes care about automatic reconnect.

Operation mode WAGO Protocol

Linux Application can provide information about the PFC and its state:

1. Device Information

Linux Application publishes PFC specific information to the Cloud when connecting.

2. Device Status

Linux Application publishes PFC specific status information on state changes to the Cloud.

For the operation mode WAGO Protocol caching can be configured within Web Based Management
(WBM) either in RAM or on a storage medium (SD Card).

Operation mode Native MQTT

PLC program will use the Linux Application as a Gateway to the MQTT-Broker.

Operation mode Sparkplug

The linux application forwards the data from the PLC program to the broker in a compressed data
format ‘Goggle Protocol Buffer’. The Linux application ensures compliance with the Sparkplug
specification.

Note

Important note!

The operation mode Sparkplug is available on 0750-821x devices.

Please check that the Sparkplug license is added to the device. 30 days

Sparkplug could be test for free with the test license.

e!COCKPIT application note – WagoAppCloud 13

WAGO-I/O-SYSTEM 750 Used material

Version 1.4.5

2 Used material

2.1 Libraries

Library Description

e!COCKPIT:
WagoAppCloud_x_x_x_x

The library provides Cloud Connectivity on the PLC side for
e!COCKPIT.

CODESYS 2.3:
WagoLibCloud

The library provides Cloud Connectivity on the PLC side for
CODESYS 2.3.

2.2 Devices

Provider Quantity Description Order number

WAGO
Kontakttechnik
GmbH & Co.
KG

1 PFC100 / PFC200

Touch Panel 600

0750-8xxx / xxxx-xxxx

0762-4x0x / xxxx-xxxx

0762-5x0x / xxxx-xxxx

0762-6x0x / xxxx-xxxx

2.3 Firmware and PLC library versions

Note

Important note!

Please check if the appropriate library for the used firmware is installed on

your PFC. If the PLC library does not match the Cloud Connectivity

version, the Cloud Connectivity will be terminated.

Firmware
Cloud

Connectivity

e!Cockpit

Bibliotheken

CODESYS 2.3

Bibliothek

FW11 v020825 1.0.0 WagoAppCloud
v1.2.0.7

WagoLibCloud v1.3.2
WagoLibCloud_internal

FW11 Patch1 v020831 1.0.0 WagoAppCloud
v1.2.0.7

WagoLibCloud v1.3.2

WagoLibCloud_internal

FW11 Patch2 v020835 1.1.0 WagoAppCloud
v1.2.0.7

WagoLibCloud v1.3.2

WagoLibCloud_internal

FW12 v030035 1.2.0 WagoAppCloud
v1.3.0.7

WagoLibCloud_02 v2.2.2

WagoLibCloud_internal_02

FW12 Patch1 v030039 1.2.2 WagoAppCloud
v1.3.0.7

WagoLibCloud_02 v2.2.2
WagoLibCloud_internal_02

FW13 Patch1 v030107 1.2.2 WagoAppCloud
v1.3.0.8

WagoLibCloud_02 v2.2.2
WagoLibCloud_internal_02

14 e!COCKPIT Anwendungshinweis – WagoAppCloud

IEC Application WAGO-I/O-SYSTEM 750

 Version 1.4.5

3 IEC Application

Note

Installation of Sample Projects for e!COCKPIT

Figure 3-1: e!COCKPIT Sample Projects

Sample programs can be called up from the e!COCKPIT Backstage view by

clicking the Updates & Add-ons button in the navigation bar.

This chapter describes in details how a PLC program for the operation mode „WAGO Protocol“ can be
implemented using e!Cockpit. It is helpful to check the referenced example programs as well when
implementing own PLC program from scratch. In the following, the creation of a PLC application with
the WAGO Protocol version 1.2 is described (further information on the WAGO Protocol and the
versions is described in the WAGO Protocol specification).

3.1 Data transmission to cloud

Telemtry is done using the Function Block FbCollectionLogger. This function block provides
implementation of two different ways to transmit data to the cloud. The one way is to send data cyclicly
by using a constant time interval, the other is by doing it on some event. Depending from the kind of
required transmission the related library parameters must be configured differently. The configuration
of the related parameters will also be sent to the cloud, so that cloud application is aware of
transmitted data, which mostly will be time series.

The related function block takes an array of type typCollection and the number of collections as
arguments. A Collection is a container for a set of variables which are sampled and transmitted as a
group. It is identified by a unique Id and requires a name (for display in the Cloud).

e!COCKPIT application note – WagoAppCloud 15

WAGO-I/O-SYSTEM 750 IEC Application

Version 1.4.5

Figure 3-2: Logged variables as a group in a collection

Note

Important note!

Please consider the name conventions for Tags and Collection within the

PLC program when using the WAGO Cloud. The PLC program developer is

responsible for observance for the naming conventions (see chapter 4.2.1.1).

If the naming conventions are disregarded, there will be problems.

With collections the PLC programmer can structure the variables clearly. This is important for the
cyclical data transmission. So the PLC programmer can set different sample and publish intervals for
each collection. Therefore it is possible to reduce the amount of data to be transmitted. The
programmer has to decide which variable are needed in the cloud in which interval.

For each Collection, an individual sample interval and publish interval can be defined.

The sample interval specifies the time between two samples of variable values. The publish interval
specifies the time between the attempts for sending the samples to the Cloud.

Both sample interval and publish interval can be changed from the Cloud.

16 e!COCKPIT Anwendungshinweis – WagoAppCloud

IEC Application WAGO-I/O-SYSTEM 750

 Version 1.4.5

Note

Important note!

The sample and publish interval must be declared as “RETAIN”. Otherwise

the updated values are lost after a reboot.

VariableTrigger2

CollectionTrigger

Publish Intervall

transmit 3 samples
of all variables to

the cloud

transmit 3 samples
of all variables to

the cloud

Cyclical Transmission for one collection

transmit 3 samples
of all variables to

the cloud

transmit 3 samples
of all variables to

the cloud

not considered for eventbased

Variable1

Variable2

VariableTrigger1

not considered for cyclical

not considered for eventbased

Sample Intervall

t

t

t

t

t

t

t

Figure 3-3: Example of cyclical transmission for one collection

In case of eventbased tansmission the parameter xSamplingDataMode of the collection must
initialized accordingly. The individual options could be initialized independent from the other
collections. So one collection could send the data eventbased and another one can send the data
cyclicly.

The PLC programmer can trigger the event per collection or per variable. With the xCollectionTrigger
all variables of the collections will be sampled and forwaded to the cloud. By xVariableTrigger only the
value of the related variable will be sampled and sent to the cloud. By setting the trigger properly the
PLC programmer is responsible for supervising the amount of data to be transferred. For every event
the PLC programmer can also define specific timestamp which will be included into the resulted data
sample.

e!COCKPIT application note – WagoAppCloud 17

WAGO-I/O-SYSTEM 750 IEC Application

Version 1.4.5

VariableTrigger2

CollectionTrigger

Sample Intervall

Publish Intervall

(1)

(2)

(1) transmit all
variables to

the cloud

(2) transmit variable
2 to the cloud

(3) transmit
variable 1 to

the cloud

(4) transmit all
variables to
the cloud

(4)

(6)

Eventbased Transmission for one collection

(5) transmit variable 1
to the cloud

(6) transmit all
variables to the

cloud

(6)

not considered for eventbased

Variable1

Variable2

VariableTrigger1

(3) (5)

Upper
Level

Upper
Level

Lower
Level

Lower
Level

t

t

t

t

t

t

t

Figure 3-4: Example of eventbased transmission for one collection1

1 In the example for the eventbased transmission are included limitations for the variables in the PLC
application. The event will be set if the value of the variable pass the upper limit or fall below the lower
limit. The collection trigger is set from the PLC application independent of the variable. This is an
example and shall demonstrate how eventbased data transmission could be used. The PLC
programmer can decide in which case it is useful to send the variables to the cloud by setting the
trigger.

18 e!COCKPIT Anwendungshinweis – WagoAppCloud

IEC Application WAGO-I/O-SYSTEM 750

 Version 1.4.5

3.1.1 Limitations

Cyclical data transmission

Note

Important note!

- min. Sample Interval is 100 Milliseconds for Cache mode = RAM

- min. Sample Interval is 1 Second for Cache mode = SD-Card

- min. Publish Interval is 1 Second

Depending on the combination of Sample Interval and Publish Interval the amout of data points, which
continuously can be sent to cloud service, is limited. Following limitations have been determined for 2
different scenarios.

 Sample Interval Publish
Interval

Data points

Scenario A 1 Second 1 Minute 10 collections each 120 variables

Scenario B 100 Milliseconds 1 Second 10 collections each 20 variables

The listed limits were measured within the following environment:

 Device: PFC 750-8202

 Network connection: Ethernet 100 Mbit/s

 PLC runtime: e!RUNTIME

 PLC program: minimalistic, 20 Milliseconds cycle time, Tag names have 80 characters

 Both cases produce data flow around 270 KB/s

Eventbased data transmission

The eventbased data transmission wants to give the PLC programmer many opportunities to set an
event. Therefore the librarie have less limitations of the data transfer. Finally the PLC programmer is
responsible that the PFC isn’t overloaded. On average the produce data flow should also don’t cross
over 270 KB/s.

Note

Important note!

The PublishInterval can not be set shorter than 100 milliseconds.

By using the eventbased data transmission the PLC programmer have to be

careful to trigger an event. Otherwise a lot of volume of data could be

transfer. Combination with Cache ode = SD-Card is not recommended due

to write speed.

Analysis

The parameter “Cache fill level”, shown in WBM, can be used to monitor and verify whether your
specific productive use case will exceed the limitations described above. If the related value is not
continuously increasing for a reasonable period of time then your productive use case should not
result in problems. Please also consider some special conditions (e.g. network connection to cloud
service is not stable or interrupted) when you make decision about the amount of data points.

e!COCKPIT application note – WagoAppCloud 19

WAGO-I/O-SYSTEM 750 IEC Application

Version 1.4.5

3.2 Command Handling

The handling of Cloud-To-Device commands is done using the following Function Blocks

 FbCommandConfigurator

 FbCommandListener

 FbCommandResponder

Cloud

FbCommandConfigurator

FbCommandListener

FbCommandResponder

- unique at the
beginning -

Figure 3-5: Procedure Command Handling

The handling of Cloud-To-Device commands is done by following three steps:

1. Registration of Commands using FbCommandConfigurator

 FbCommandConfigurator publishes the provided commands to the Cloud per the
information provided by typCommandDescription input.

 The Cloud application can provide a user interface to request the execution of the
command based on the typCommandDescription.

 A Command can have up to 16 request and 16 response parameters. These
parameters are provided by the struct typCommandParameterDescription.

2. Listening for incoming CommandRequests using FbCommandListener

- If a command request arrives from the Cloud the xCommandReceived flag is set to
true for one cycle.

- FbCommandListener requires a pointer to a typCommandRequest struct which
contains the information about the command request call.

- The Command is handled based on the information provided by
typCommandRequest.

20 e!COCKPIT Anwendungshinweis – WagoAppCloud

IEC Application WAGO-I/O-SYSTEM 750

 Version 1.4.5

3. Confirmation of command execution using FbCommandResponder

- The execution of every command must be confirmed to the Cloud application by using
FbCommandResponder.

- The cloud application shall only send the next command after the previous one was
executed and confirmed.

- The confirmation of command execution should be done by providing a
typCommandResponse.

- Response parameters are send to the Cloud by using the same type
typCommandResponse.

A simple implementation to send commands from the cloud to the device is shown in the example
WagoAppCloud_FbCommadListener_Example1.ecp.

3.3 Online Change

Before using the function online change by Codesys 2.3 it is necessary to execute the following steps:

1. Activate online change in the target settings

Figure 3-6: Activate online change in the target settings (Codesys 2.3)

2. Activate the system event online change in the task configuration and assign the function
block FbResetWagoLibCloud from the library WagoLibCloud to this system event

e!COCKPIT application note – WagoAppCloud 21

WAGO-I/O-SYSTEM 750 IEC Application

Version 1.4.5

Figure 3-7: Activate the system event online change in the task configuration (Codesys

2.3)

3. Compile the program and execute the online change

Figure 3-8: Compile the program with online change

Note

Important note!

After an Online Change there might be changes concerning the data on

certain addresses. Please regard this in case of using pointers on addresses.

22 e!COCKPIT Anwendungshinweis – WagoAppCloud

Commissioning WAGO-I/O-SYSTEM 750

 Version 1.4.5

4 Commissioning

4.1 General configuration

This chapter shows a view of general information and settings for the PFC. It is strongly recommended
to read this chapter.

 Please consider that the enabled Cloud Connectivity can decrease the performance of the
PFC.

 PFC200: Please keep in mind that you have to configure the runtime. You have the choice
between Codesys 2.3 and e!RUNTIME. The runtime can be configured by using the WBM.

1. Launch the WBM in a Web browser.

2. Click on the PLC Runtime menu item

3. Enter the Username and Password to authenticate on the PFC. Click [Submit]. A
message box may appear that prompts you to change the password for security
reasons.

4. Click [Submit]

5. General PLC Runtime Configuration will be shown.

6. If the Codesys 2.3. library should be used than select “Codesys 2” for PLC runtime
version otherwise select “e!RUNTIME”.

Note

Change passwords
Default passwords are documented in these instructions and therefore do not

offer adequate protection! Change the passwords to meet your particular needs

for several groups (WBM: admin, user – Linux: root, admin, user). For further

information see into the manual of the PFC.

4.1.1 Establishing an Internet Connection to the PFC

The PFC is to be connected to the Internet so that:

 A cloud service can be set up on the Internet.

 The NTP client can synchronize with a time server.

The PFC200 (750-8207) has a mobile radio modem that can be used to connect to the Internet.

All other PFCs require an external mobile radio modem that can be connected using one of two
ETHERNET interfaces or an Internet connection via network cable to one of two ETHERNET
interfaces.

Assumption: Both the X1 and X2 ETHERNET interfaces obtain their IP addresses via DHCP.

The configuration example described below for a mobile radio modem that is connected externally
assumes that the PFC ETHERNET interface:

 DHCP is configured on the Configuration Type.
 An IP address for the PFC is obtained from the DHCP server via the mobile radio modem.
 An IP address for a gateway is obtained from the DHCP server via the mobile radio modem.
 An IP address for the DNS server is obtained from the DHCP server via the mobile radio

modem.

Configuration example:

1. Launch the WBM in a Web browser.

2. Move the mouse over the Networking menu item and select the ETHERNET menu item.

3. Select “Separated” in the Switch Configuration section and click [Submit] to write the
parameter.

e!COCKPIT application note – WagoAppCloud 23

WAGO-I/O-SYSTEM 750 Commissioning

Version 1.4.5

4. Move the mouse over the Networking menu item and select the TCP/IP menu item.

5. Check that the DHCP configuration type is selected for both ETHERNET interfaces. If not,
change the settings and click [Submit] to save.

Information

Additional information

It is also possible to assign a static IP address to one or both ETHERNET

interfaces. If the ETHERNET interface by which the Internet connection is

made is configured using a static IP address, make sure that a gateway is

specified and enabled in the TCP/IP menu item. Otherwise, the Internet

connection will not work.

6. Log into the PFC via “Remote Shell”.

7. After logging into the PFC successfully via “Remote Shell”, the ping 8.8.8.8 command can be
executed.

8. Enter nslookup www.google.de. If the IP address of www.google.de is returned, name
resolution works, too.

9. If one or both tests fail, steps 1 - 9 should be checked.

4.1.2 Ports Used for Cloud Connectivity

The Cloud Connectivity functionality uses ports 1883 (unencrypted connection) and 8883 (encrypted
connection). To ensure communication between the Cloud functionality on the PFC and the cloud
service, make sure that the specified ports are Internet accessible and not blocked by a firewall for
incoming data traffic. In other words, if incoming data traffic is blocked on the above ports, no
connection between the Cloud Connectivity functionality on the PFC and the cloud service is possible.

Via „Remote Shell“ it is possible to verify whether cloud service is connectable from your PFC, i.e.:
telnet wagocloud.azure-devices.net 8883. If the port port is accessible after some minutes the host
closed the connection and give back the follow message: Connection closed by foreign host. If the
port is blocked by a firewall the follow message is coming: telnet: can't connect to remote host
(13.69.192.43): Connection timed out.

4.1.3 Internet Connection via a Web Proxy Server

To use the Cloud Connectivity functionality, an Internet connection to a cloud service configured in
WBM is required. The Internet connection must be direct, i.e., an Internet connection via an
intermediate Web proxy server is not possible.

http://www.google.de/
http://www.google.de/

24 e!COCKPIT Anwendungshinweis – WagoAppCloud

Commissioning WAGO-I/O-SYSTEM 750

 Version 1.4.5

4.1.4 Activate Time Synchronsiation

It is imperative to ensure that the PFC's time and date are correct. If the time and date are incorrect,
problems arise when checking certificates. As a result the secure, certificate based network
connection to the cloud service would always fail. Therefore, it is recommended that you enable the
PFC's NTP client.

The NTP client will be activated with WBM:

1. Launch the WBM in a Web browser.

2. Click the Ports and Services menu item.

3. Enter the Username and Password to authenticate on the PFC. Click [Submit]. A message
box may appear that prompts you to change the password for security reasons.

4. Click the NTP Client menu item.

5. Choose the button Service enabled and enter the time server address. (e.g. the google NTP
server: 216.239.35.8 or the time server of the ‘Physikalisch-Technische Bundesanstalt’ in
Braunschweig: 192.53.103.108).

6. Click the [Submit] button to take the settings.

7. Control the time.

Note

Important note!

If the clock on the PFC is wrong, then it is impossible to connect to the

Cloud. This is because the handshake for establishing the encrypted TLS

connection is based on the correct date and time.

For further information see into the manual of the PFC.

e!COCKPIT application note – WagoAppCloud 25

WAGO-I/O-SYSTEM 750 Commissioning

Version 1.4.5

4.2 Setup Cloud Connectivity

This chapter describes as a quick start guide how to set up a dedicated cloud service and configure
the Cloud Connectivity functionality for it.

The cloud services are configured on the Cloud Connectivity page in WBM. Input masks for the
following cloud services are available:

 WAGO Cloud

 Azure

 IBM Cloud

 Amazon Web Services (AWS)

 SAP IoT Services

A special form takes the “MQTT AnyCloud” entry. A connection to any cloud can be established that
supports MQTT Protocol, Version v3.1/v3.1.1 such as the MQTT broker on the Mosquitto stack.

4.2.1 WAGO Cloud

The steps required to connect to WAGO Cloud are described below. A more detailed description of
the WAGO Cloud user interface is included in the WAGO Cloud Quickstart Reference.

4.2.1.1 Configuring Cloud Connectivity for WAGO Cloud

1. Launch the PFC's WBM in a Web browser.

2. Click the Cloud Connectivity menu item.

3. Enter the Username and Password to authenticate on the PFC. Click [Submit]. A message
box may appear that prompts you to change the password for security reasons. The Cloud
Connectivity configuration page opens.

4. In the “Settings” section, select the “WAGO Cloud” entry in the Cloud Platform selection box.

5. Default Host Name is “wagocloud.azure-devices.net”, can be changed if required so.

6. Enter the device ID in the Device ID field. This is the device ID from the WAGO Cloud.

7. Enter the activation key from WAGO Cloud in Activation Key.

8. The Cache Mode dropdown box in the “Operation behavior” section can be used to select
whether data is cached in RAM (volatile) or on the SD card (non-volatile).

9. Click the [Submit] button to write the configuration.

10. The PFC must be restarted to apply the settings.

https://www.wago.com/medias/q2759xxxx-Cloud-0en.pdf?context=bWFzdGVyfHJvb3R8MTY0NDU5NnxhcHBsaWNhdGlvbi9wZGZ8aDZmL2gwZC85NDg3ODYyNjI4MzgyLnBkZnwwYWEzOWFmNzBiNTIxZDlhYWI5ZTBjYTczMmEwMWZiMDZlNGM3ZWUwMjlhNzM4OTY0YzgwMmM2MDkxN2Y1YjQ5#page=1
https://www.wago.com/medias/q2759xxxx-Cloud-0en.pdf?context=bWFzdGVyfHJvb3R8MTY0NDU5NnxhcHBsaWNhdGlvbi9wZGZ8aDZmL2gwZC85NDg3ODYyNjI4MzgyLnBkZnwwYWEzOWFmNzBiNTIxZDlhYWI5ZTBjYTczMmEwMWZiMDZlNGM3ZWUwMjlhNzM4OTY0YzgwMmM2MDkxN2Y1YjQ5#page=15
https://www.wago.com/medias/q2759xxxx-Cloud-0en.pdf?context=bWFzdGVyfHJvb3R8MTY0NDU5NnxhcHBsaWNhdGlvbi9wZGZ8aDZmL2gwZC85NDg3ODYyNjI4MzgyLnBkZnwwYWEzOWFmNzBiNTIxZDlhYWI5ZTBjYTczMmEwMWZiMDZlNGM3ZWUwMjlhNzM4OTY0YzgwMmM2MDkxN2Y1YjQ5#page=15

26 e!COCKPIT Anwendungshinweis – WagoAppCloud

Commissioning WAGO-I/O-SYSTEM 750

 Version 1.4.5

4.2.1.2 PLC Application for WAGO Cloud

The PLC program developer is responsible for observing the naming conventions for tags and
collections. If this convention is disregarded, no data will be displayed in the WAGO Cloud.

The following rules apply for strings used for the Tag of a variable

 It must be unique within a collection

 It must follow rules for C# identifiers

 Following characters are not allowed for the string used for the Tag of a variable

 The “space” character

 The forward slash (/) character

 The backslash (\) character

 The number sign (#) character

 The question mark (?) character

 Dash (-)

 Control characters including i.e. the horizontal tab (\t) character, the linefeed (\n)
character and the carriage return (\r) character

Following characters are not allowed for the string used for the name of a collection:

 The forward slash (/) character

 The backslash (\) character

 The number sign (#) character

 The question mark (?) character

 Control characters, including i.e. the horizontal tab (\t) character , the linefeed (\n)
character and the carriage return (\r) character

e!COCKPIT application note – WagoAppCloud 27

WAGO-I/O-SYSTEM 750 Commissioning

Version 1.4.5

4.2.2 Microsoft Azure

Azure account is required in order to use Azure Cloud Services. In case you want use Azure Services
for the first time you might start by creating a free Azure account (https://azure.microsoft.com/en-
us/free/). Such Azure account is limited by credit limit and time span. Afterwards it only becomes liable
to pay when you decide for further subscription.

Having an Azure account check the following subchapters describing how to setup the needed
services using Azure Portal.

4.2.2.1 Setting up Azure IoT Hub

Azure IoT Hub is a fully managed service that enables reliable and secure bidirectional
communications between millions of IoT devices and a solution back end. It is the communication
endpoint to Azure from the view of your Wago PFC.

To create IoT Hub please do these steps:

1. Sign in to the Azure Portal https://portal.azure.com

2. In the Jumpbar, nagigate to New > Internet of Things > IoT Hub

Figure 4-1: Add IoT Hub

3. Enter name, select pricing and scale tier, create new resource group and select the
location for your new IoT Hub (please check online documentation for details
https://docs.microsoft.com/en-us/azure/iot-hub/quickstart-send-telemetry-dotnet)

4. It can take a few minutes for Azure to create your new IoT Hub. To check the status,
you can monitor the progress on the Startboard or in the Notifications panel.

Figure 4-2: Status of deployment

https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://portal.azure.com/
https://docs.microsoft.com/en-us/azure/iot-hub/quickstart-send-telemetry-dotnet

28 e!COCKPIT Anwendungshinweis – WagoAppCloud

Commissioning WAGO-I/O-SYSTEM 750

 Version 1.4.5

4.2.2.2 Registering new device

To register new device to your IoT Hub please do these steps:

1. Within Azure Portal navigate to Device Explorer of your IoT Hub and click [Add]

Figure 4-3: Add device

2. Enter ID for your device, select symmetric key, let auto-generate keys and finally press
[Save] button

3. Added device will be listed. When clicking it you will see all the details including its
keys and connection strings.

Figure 4-4: Device details

e!COCKPIT application note – WagoAppCloud 29

WAGO-I/O-SYSTEM 750 Commissioning

Version 1.4.5

4.2.2.3 Configuring Cloud Connectivity

1. Within Azure Portal select your device and copy the primary key to clipboard

Figure 4-5: Device primary key

2. Launch WBM of your Wago PFC and navigate to Cloud Connectivity

3. Select Azure as cloud platform

4. Enter hostname of your IoT Hub and Device Id respectively

5. Paste primary key from clipboard into field named Activation key

Figure 4-6: Configuration Cloud Connectivity

5. Click [Submit] to save your configuration and reboot your Wago PFC

6. Status area indicates whether your Wago PFC is connected toyour Azure IoT Hub

4.2.2.4 Monitoring device-to-cloud messages

Azure Portal shows only the total number of messages received by IoT Hub, so that indication is not
very helpful during development phase.

This topic describes how to use Device Explorer Tool to view the messages which are sent by your
Wago PFC to your Azure IoT Hub.

1. Make sure your Wago PFC is connected to your Azure IoT Hub and your PLC program
is continuously forwarding data to the cloud platform

2. Download a pre-built version of the Device Explorer Tool from
https://github.com/Azure/azure-iot-sdk-csharp/releases, install and run it

3. Make sure port 5671 is open because Device Explorer Tool uses it to retrieve data
from IoT Hub

4. In the Configuration tab enter/paste connection string of your IoT Hub and click
[Update]

https://github.com/Azure/azure-iot-sdk-csharp/releases

30 e!COCKPIT Anwendungshinweis – WagoAppCloud

Commissioning WAGO-I/O-SYSTEM 750

 Version 1.4.5

Figure 4-7: Device Explorer Tool

5. In the tab Data select your device and click [Monitor] button

Figure 4-8: Monitoring device-to-cloud messages

e!COCKPIT application note – WagoAppCloud 31

WAGO-I/O-SYSTEM 750 Commissioning

Version 1.4.5

7. When your IoT Hub has received message from your Wago PFC then Device Explorer
Tool will request and display it promptly

4.2.2.5 Send cloud-to-device messages

It is possible to send commands from Azure to your Wago PFC using Device Explorer Tool or Azure
Portal. This chapter describes the way to do it via Azure Portal.

1. Make sure your Wago PFC has network connection to Azure

2. Make sure your Wago Controller can execute the command yout want send to it

3. In Azure Portal navigate to Your IoT Hub > Device Explorer > Your Device > Message
To Device

4. Enter your command as Message Body, add property named CommandRequestId with
any number as value, click [Send Message]

Figure 4-9: messages from the cloud to the device

5. Observe that your Wago PFC has executed the command you sent in previous step

32 e!COCKPIT Anwendungshinweis – WagoAppCloud

Commissioning WAGO-I/O-SYSTEM 750

 Version 1.4.5

4.2.3 Amazon Web Services (AWS)

The steps required to use the IoT service from AWS are described below.

First of all an account must be created at https://aws.amazon.com. There is no cost to create an
account. You can start a test phase in which 250,000 messages/month can be sent in the first year at
no cost.

4.2.3.1 Sign in to the AWS IoT Service

After successfully login in to the AWS Management Console, open the AWS IoT Console (Service:
IoT Core)

Please refer to the AWS doumentation for more information:
https://docs.aws.amazon.com/iot/latest/developerguide/iot-console-signin.html

You can choose where service data should be hosted or on which servers the service should run. Use
the selection box at the top right next to the “Service” selection box.

Information

Additional information

Devices created later and messages send to the cloud are only visible if you

select the right server location. “Right” means that a device with the setting

N. Virginia has been created. The created device and messages send to the

cloud are then also visible when N. Virginia is selected.

4.2.3.2 Creating a new device in the AWS IoT Service

To successfully create a device at the AWS IoT console, the following steps must be performed:

1. Register a device in the Registry

Select Manage in the left navigation pane and create a new device.

(https://docs.aws.amazon.com/iot/latest/developerguide/register-device.html)

2. Create and Activate a Device Certificate

Select Secure - Certificate in the left navigation pane and create a new certificate.

(https://docs.aws.amazon.com/iot/latest/developerguide/create-device-certificate.html)

Note

Important note!

Download the created certificates because later the certificates must be

copied to the PFC. You need the certificate for this device (.cert) and the

private key.

3. Create an AWS IoT Policy

Select Secure – Policy in the left navigation pane and create a new policy.

(https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-policy.html)

4. Attach an AWS IoT Policy to the Device Certificate

Select Secure - Certificate in the left navigation pane and attach the policy to the certificate.

(https://docs.aws.amazon.com/iot/latest/developerguide/attach-policy-to-certificate.html)

5. Attach a Certificate to a device

Select Secure - Certificate in the left navigation pane and attach the certificate to the device.

(https://docs.aws.amazon.com/iot/latest/developerguide/attach-cert-thing.html)

https://aws.amazon.com/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-console-signin.html
https://docs.aws.amazon.com/iot/latest/developerguide/register-device.html
https://docs.aws.amazon.com/iot/latest/developerguide/create-device-certificate.html
https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-policy.html
https://docs.aws.amazon.com/iot/latest/developerguide/attach-policy-to-certificate.html
https://docs.aws.amazon.com/iot/latest/developerguide/attach-cert-thing.html

e!COCKPIT application note – WagoAppCloud 33

WAGO-I/O-SYSTEM 750 Commissioning

Version 1.4.5

4.2.3.3 Configuring Cloud Connectivity for Amazon Web Services (AWS)

This section describes the steps to configure the Cloud Connectivity functionality of the PFC for
Amazon Web Services (AWS). It is assumed that the AWS IoT service and a device have been set up
in advance.

The following list describes the required steps to connect Cloud Connectivity to AWS.

1. Launch the PFC's WBM in a Web browser.

2. Click the Cloud Connectivity menu item.

3. Enter the Username and Password to authenticate on the PFC. Click [Submit]. A message
box may appear that prompts you to change the password for security reasons. The Cloud
Connectivity configuration page opens.

4. In the “Settings” section, select the “Amazon Web Services (AWS)” entry in the Cloud
Platform selection box.

5. Enter the Amazon host name for the “AWS IoT Service” in the Host Name field. For the host
name you have to find your personal endpoint

To find the custom endpoint for the device, the following steps are necessary:

 Select Manage – Things in the left navigation pane.

 Choose your device.

 Select Interact in the left navigation pane.

 The Rest API Endpoint is in the area HTTPS. This is your host name.

The host name looks something like this:

ABCDEFG1234567-ats.iot.us-east-1.amazonaws.com

Here ABCDEFG1234567 is the subdomain (own AWS account) and us-east-1 the region.

6. Enter the device ID in the Device ID field. The device ID value can be freely selected, but
should not contain any special characters.

7. The CA File field is used to specify the path to the CA file. Enter /etc/ssl/certs/ ca-
certificates.crt here.

8. Then upload the certificate called “Name_of_the_device.cert.pem” from the file downloaded by
AWS to the /etc/ssl/certs/ folder on the PFC.2

Information

Additional information

Name_of_the_Device is the name entered when registering the device in the

AWS IoT Service.

9. Enter the path with the file name of the certificate uploaded in step 8 in the Certificate File
field.

10. Then upload the private key called “Name_of_the_device.private.key” from the file
downloaded by AWS to the /etc/ssl/certs/ folder on the PFC.

11. Enter the path with the file name of the private key uploaded in step 10 in the Key File field.

12. The following three settings are possible in the “Operation Behavior” section.

1. The Cache Mode checkbox can be used to set whether data is cached in RAM
(volatile) or on the SD card (non-volatile) if the connection is interrupted. When the
connection is restored, the data is transferred to the cloud. The cache memory is
limited to 3 MiB in RAM and 512 MiB on the microSD card.

2. The DeviceInfo checkbox is used to enable or disable transmission of device info.

3. The Device Status checkbox is used to enable or disable transmission of the device
status.

15. Click the [Submit] button to write the configuration.

16. The PFC must be restarted to apply the settings.

2 The WinScp tool can be used in Microsoft Windows for this purpose. The scp command line tool can
be used in Linux®.

34 e!COCKPIT Anwendungshinweis – WagoAppCloud

Commissioning WAGO-I/O-SYSTEM 750

 Version 1.4.5

4.2.3.4 Testing a Created Device

You can test a device previously created from the Test menu item. Before the test can be successfully
completed, the PFC must be configured for the AWS IoT service. Please refer to Section 4.2.3.3.

Information

Additional information

The device to be tested must be in the namespace currently selected because

the device and messages are otherwise not visible. In other words, a device

created in the N. Virginia namespace is also only visible there. This also

applies to the data.

1. Click the Test menu item. The MQTT client opens.
(https://docs.aws.amazon.com/iot/latest/developerguide/view-mqtt-messages.html)

Figure 4-10: Amazon MQTT Client

2. Enter the value “Device_ID_from_the_WBM/#” in the Subscription topic field.
Device_ID_from_the_WBM is the field value from the WBM Cloud Connectivity site.

3. Click [Subscribe to topic]. The subscription is displayed on the left side.

4. Click the subscription you just created. An empty window opens on the right next to the
subscription.

https://docs.aws.amazon.com/iot/latest/developerguide/view-mqtt-messages.html

e!COCKPIT application note – WagoAppCloud 35

WAGO-I/O-SYSTEM 750 Commissioning

Version 1.4.5

Figure 4-11: MQTT Client, Subscription View

5. To publish, the topic is automatically applied from the subscription. If not, enter the topic in the
field to the right of “Publish”.

6. Click [Publish to topic] to send the message in the small console window below the Topic
field to the “AWS IoT MQTT Broker”.

7. Check if the sent message appears at the top in the MQTT client under Subscriptions. If yes,
the configuration is working.

36 e!COCKPIT Anwendungshinweis – WagoAppCloud

Commissioning WAGO-I/O-SYSTEM 750

 Version 1.4.5

4.2.4 IBM Cloud

The steps required to use the “Watson IoT Platform” service in IBM Cloud are described below.

4.2.4.1 Creating a User Account and Service in IBM

1. Create test account (valid only 30 days, no credit card required)
2. Login (https://login.ng.bluemix.net)
3. In the IBM Cloud, click the Create Resource button under Dashboards.
4. Select Internet of Things Platform from the left menu.
5. Select an appropriate pricing structure (try the free “Lite” plan) and build the IBM Watson IoT

Platform.
6. The “Internet of Things Platform” service details then appear.

7. Click [Start] to display the “IBM Watson IoT Platform Service”.

8. In the menu list on the left side, click the Devices entry for device management.
9. Click [Add Device] to add a device.
10. Then create a device type by clicking [Create Device Type]. You are asked whether you want

to create a “Device type” or “Gateway type”. Select “Device type”. Enter the name and
description of the “Device type” in the next dialog. Define a template (optional) in the next
dialog. Click [Next] to go to the next dialog. If you have selected fields for the template, the
fields defined in the template are to be filled out. Click [Next] to go to enter the optional
“metadata”. Click [Create] to create the device type.

11. The previously created device type is then selected. By clicking [Next], you are prompted in
the next dialog to specify a device ID (required). The fields selected from the template of the
device type previously created also appear. The fields are automatically populated with default
values from the template and are to be adjusted accordingly. In the next step, you are
prompted for the optional metadata that must be added in JSON format. Click [Next] to select
the security to be used. The following options are available: “Automatically generated
authentication token” or “Self-provisioned authentication token”. Click [Next] to select
automatic generation of the token. The next dialog displays a summary of all device-related
data. Click [Add] to create a device and to display the identification details for the device. This
dialog should be saved, so that you have the device data at hand to register the device.

4.2.4.2 Configuring Cloud Connectivity for IBM Cloud

This section describes the steps to configure the Cloud Connectivity functionality of the PFC for IBM
Cloud. It is assumed that the IBM Cloud service and a device have been set up at IBM in advance. It
is also assumed that the identification data for a device is available.

The following list describes the required steps to connect Cloud Connectivity to IBM Cloud.

1. Launch the PFC's WBM in a Web browser.

2. Click the Cloud Connectivity menu item.

3. Enter the Username and Password to authenticate on the PFC. Click [Submit]. A message
box may appear that prompts you to change the password for security reasons. The Cloud
Connectivity configuration page opens.

4. In the “Settings” section, select the “IBM Cloud” entry in the Cloud Platform selection box.

5. Enter the IBM host name for the “IBM Watson IoT Platform” in the Host Name field. The host
name is configured as follows:

org_id.messaging.internetofthings.ibmcloud.com
org_id must be replaced by the respective organization ID.

Information

Additional information

The organization ID was specified when creating a device in “Your

Identification Data for the Device”.

https://login.ng.bluemix.net/UAALoginServerWAR/blueidclient/tkM810HLsH

e!COCKPIT application note – WagoAppCloud 37

WAGO-I/O-SYSTEM 750 Commissioning

Version 1.4.5

6. Enter the device ID in the Device ID field. The structure of the device ID is shown below:

d:org_id:device_type:device_id

Table 1: Explanation of the Device ID Substrings

d The “d” signals to the “IBM Watson IoT Platform Service” that the string
is a device.

org_id To be replaced by its own organization ID.

device_type The device type is defined by the DeviceType that has been assigned to
the device in the “IBM Watson IoT Platform Service”.

device_id The device ID assigned to the device

7. The TLS checkbox can be used select whether the connection is encrypted and data is
transferred in encrypted format.

8. The CA File field is used to specify the path to the CA file. Enter
/etc/ssl/certs/ca-certificates.crt here.

9. Select the value “1883” in the Port field for an unencrypted connection. Select Port “8883” for
an encrypted connection.

10. Enter the value “use-token-auth” in the User field.

11. Enter the password in the Password field (authentication token) from the device settings in
the IBM Cloud.

12. The following three settings are possible in the “Operation Behavior” section.

1. The Cache Mode checkbox can be used to set whether data is cached in RAM
(volatile) or on the SD card (non-volatile) if the connection is interrupted. When the
connection is restored, the data is transferred to the cloud. The cache memory is
limited to 3 MiB in RAM and 512 MiB on the microSD card.

2. The Device Info checkbox is used to enable or disable transmission of device info.

3. The Device Status checkbox is used to enable or disable transmission of the device
status.

15. Click the [Submit] button to write the configuration.

16. The PFC must be restarted to apply the settings.

38 e!COCKPIT Anwendungshinweis – WagoAppCloud

Commissioning WAGO-I/O-SYSTEM 750

 Version 1.4.5

4.2.4.3 Creating Data Visualization

The data sent to IBM Cloud can be displayed in the “IBM Watson IoT Platform” in graphical or textual
form. Various display types are available. As an example, some data from the “DeviceInfo” structure is
displayed in a so-called card.

The dashboard with available boards serves as a starting point. In the Web browser, we are going to
the following site https://org_id.internetofthings.ibmcloud.com/dashboard/boards/
org_id is to be replaced by its own organization ID.
An overview of all boards appears after logging in (see Figure 4-12).

Figure 4-12: Overview of All Boards

https://org_id.internetofthings.ibmcloud.com/dashboard/boards/

e!COCKPIT application note – WagoAppCloud 39

WAGO-I/O-SYSTEM 750 Commissioning

Version 1.4.5

We will now create a new board with a new card:

1. Click [+Create New Board]. The dialog for creating boards appears. Enter the “Name” and a
“Description” for the board.

2. Click [Next] to display other board settings. Click [Apply] to apply the settings. The new board

is displayed in the board overview after a few seconds.

3. Then click “Board” to put the focus on the previously created board. You can then change the
board settings or add a new card.

4. Click [+Add New Card] to open a dialog for selecting a card type.
5. For example, select the device “value” by clicking on it.
6. All available devices are then displayed. Select the device that should serve as the source.

Click [Next] to display the dataset settings.
7. Click [Connect to New Dataset] to display other fields. Click the field below “Event” to display

a list of the events previously delivered to IBM Cloud, e.g., “DeviceInfo”. 3 We select them.
8. Click the field below “Property” to display a list of the properties previously delivered, e.g.,

“Firmware Version”. We select them.
9. The “Name” field is automatically populated with the property name, but can also be renamed.
10. The “Type” field specifies the property types, e.g., “Text” or “Number” can be selected. In this

example, select “Text”.

Information

Additional information

More than one service can be created on one card (see Figure 4-13)

Figure 4-13: Selecting Data for the Card

11. Click [Next] to display a card preview (see Figure 4-14).

3 So you can select events here, data must have been sent to the cloud in advance. If no data has
been sent to the cloud, the selection list is empty.

40 e!COCKPIT Anwendungshinweis – WagoAppCloud

Commissioning WAGO-I/O-SYSTEM 750

 Version 1.4.5

Figure 4-14: Preview of the Card with Selected Data

11. Click [Next] to display a summary and to select a color scheme.
12. Click [Submit] to complete the card setup.

4.2.4.4 Customer Applications

 General Information on IBM Cloud Services

o https://www.ibm.com/cloud-computing/bluemix/de/watson

 Getting Started

o https://console.ng.bluemix.net/docs/services/IoT/index.html

https://www.ibm.com/cloud-computing/bluemix/de/watson
https://console.ng.bluemix.net/docs/services/IoT/index.html

e!COCKPIT application note – WagoAppCloud 41

WAGO-I/O-SYSTEM 750 Commissioning

Version 1.4.5

4.2.5 SAP IoT Services

The steps for using the SAP IoT Services are described below. Your SAP consultant creates an
account in SAP for you.

4.2.5.1 SAP IoT Service Cockpit: Log On

You log on to the SAP Demo IoT Service using the URL:
https://com-iotaedemo.eu10.cp.iot.sap You will receive the final link and access data from your SAP
consultant.

After registration you will be taken to the "Internet of Things Service Cockpit". Create the desired
users in your Tenant under User Managements > User (see Create User and Tenant). Your SAP
consultant can help you to create the Tenant.

4.2.5.2 SAP IoT Service Cockpit: Create a Device

By selecting the Tenant the Device Management becomes visible in the menu.

1. Select Device Management > Devices from the menu and click [+].

2. Fill in the mandatory field Name.

3. Configure Gateway as [MQTT Network (ID: 2)].

4. Complete the creation of the new Device with [Create] and [Confirm].

The Device is now created. In the next steps, the data structures supported by the device are defined.

4.2.5.3 SAP IoT Service Cockpit: Create a Capability

A capability is a template of a data structure that is transferred from the WAGO device to the SAP IoT
service.

1. Select Device Management > Capabilities from the menu and click [+].

2. Fill in the mandatory field Name.

3. Create a list of the variables to be transferred in the Properties table. Enter a Name for each
variable and select the Data Type. Optionally, you can also enter a Unit of Measure for each
variable. To add more variables, click [+].

4. Finish creating the new capability with [Create] and [Confirm].

4.2.5.4 SAP IoT Service Cockpit: Create a Sensor Type

A sensor type is a template that contains at least one capability.

1. Select Device Management > Sensor Types from the menu and click [+].

2. Fill in the mandatory field Name.

3. Select the capabilities you want to support from the list of Capabilities and assign the type to
each one in the Type field. Possible values for Type are measure and command. The Type
measure represents data that is published by the device. The Type command represents
data subscribed by the device. To add more variables, click [+].

4. Complete the creation of the new sensor type with [Create] and [Confirm].

https://com-iotaedemo.eu10.cp.iot.sap/
https://help.sap.com/viewer/78ac6b240a97447986e09b991d8a570a/Cloud/en-US

42 e!COCKPIT Anwendungshinweis – WagoAppCloud

Commissioning WAGO-I/O-SYSTEM 750

 Version 1.4.5

4.2.5.5 SAP IoT Service Cockpit: Create a Sensor

1. Select your [Device] in the Device Management > Devices menu.

2. Select [Sensors] and click [+] to create a new sensor.

3. Fill in the mandatory field Name.

4. Select your sensor type from the list Sensor Type.

5. Complete the creation of the new sensor with [Create] and [Confirm].

6. If there is still a default sensor (sensor: 0:0:0:0) in the list of Sensors, delete it by clicking on
the trash can icon and confirm the deletion with [Confirm].

4.2.5.6 SAP IoT Service Cockpit: Generate a Certificate

1. Select your [Device] in the Device Management > Devices menu.

2. Select [Certificate] and press [Generate Certificate].

3. Select the certificate type [pem] in the selection dialog that appears and confirm the dialog
with [Generate].

Note

Important note!

Make a note down the displayed Secret, as it is required in the next step.

The certificate with the name: Name_Your_Device-device_certificate.pem was created and is now
in the download directory of your PC.

4.2.5.7 Separating the key of a certificate

The certificate generated by SAP cannot be processed directly by the WAGO device. For this reason,
the key must be separated.

Note

Important note!

To separate the key, a working installation of the open source tool openSSL-

Win32 is required (for installation instructions, see Install OpenSSL).

1. Copy the certificate from the download directory to the openssl-win32\bin directory.

2. Open a Windows command line with administrator privileges and navigate to the directory
openssl-win32\bin.

3. Enter the following command, where < myCertificate.pem> has to be replaced with the name
of your certificate and < myKey.key> by the name of the target file. Confirm with Enter:

openssl rsa -in "< myCertificate.pem>" -out "< myKey. key>"

4. Enter the corresponding secret and confirm with Enter.

5. Download the two files (the certificate and the key) to the WAGO device in the directory:
/etc/ssl/certs/

https://help.sap.com/viewer/11a46adc52d6404ebc50d27c353db153/Cloud/en-US

e!COCKPIT application note – WagoAppCloud 43

WAGO-I/O-SYSTEM 750 Commissioning

Version 1.4.5

Note

Important note!

For copying the certificates to the WAGO device an FTP client such as the

open source program FileZilla (see https://filezilla-project.org/) can be used.

4.2.5.8 Configuration of Cloud Connectivity

1. Use a Web browser to call the WBM of your WAGO device.

2. Select the [Cloud Connectivity] menu item.

3. Enter Username and Password to authenticate to the PFC. Click [Submit]. Possibly, a
message box will appear indicating that the password should be changed for security reasons.
The Cloud Connectivity configuration page opens up.

4. In the Settings section, select [SAP IoT Services] from the Cloud platform drop-down list.

5. Activate the [Service enabled] check box.

6. Enter your SAP host name in the Host name field. You can obtain the host name from your
SAP consultant. Example for the demo host: com-iotaedemo.eu10.cp.iot.sap

7. In the Client ID field, enter the Alternate ID of your device. (Alternate ID is displayed in the
SAP IoT Service Cockpit under Device Management > Devices)

8. Activate the [TLS] selection box.

9. Enter "8883" in the Port field.

10. In the CA File field, enter the path to the CA file:

"/etc/ssl/certs/ca-certificates.crt"

6. In the Certification file field, enter the path (incl. file name) of your certificate (e.g.
"/etc/ssl/certs/myCertificate.pem").

7. In the Key file field, enter the path (incl. file name) of your key (e.g.
"/etc/ssl/certs/myKey.key").

8. Select [Submit] and reboot the WAGO device.

9. Now check the connection status in the WBM under Cloud Connectivity. This must be
connected after a few minutes.

Information

Further information

The selection fields [Clean Session] and [Last Will] can be optionally set

depending on the desired behavior.

Note

Important note!

If the WAGO device does not connect to the SAP IoT service, check the

previous steps. Make sure that you have entered the Alternate ID as the

client ID in the WBM and that the used port is not blocked by a firewall etc.

https://filezilla-project.org/

44 e!COCKPIT Anwendungshinweis – WagoAppCloud

Commissioning WAGO-I/O-SYSTEM 750

 Version 1.4.5

4.2.5.9 e!COCKPIT Program

To create an e!COCKPIT program for communication with the SAP IoT Service as conveniently as
possible, we recommend that you use the following libraries:

WagoAppJSON: Serializing and Parsing the JSON Payload

WagoAppCloud: Publish and subscribe data using nativeMQTT

Sending data

WagoAppJSON: Use the function block Fb_JSON_Writer_01 to serialize the payload to the JSON
format. The JSON-BaseFrame is composed as follows:

Note

Important note!

For better readability, line breaks were used in the following example. These

must not be part of your JSON. The placeholders marked with <> must be

replaced as described below. The placeholders #parameters are replaced

during serialization by the transferred values within the function block.

{
"capabilityAlternateId": "<capabilityAlternateId>",
"sensorAlternateId": "<sensorAlternateId>",
"measures": [{
"<Name Property1>": "#Parameter",
"<Name Property2>": "#Parameter"}]
}

1. Replace < capabilityAlternateId> , with the Alternate ID of the Capability from the SAP IoT
Service Cockpit.

2. Replace < sensorAlternateId> with the Alternate ID of the sensor from the SAP IoT Service
Cockpit.

3. Replace <Name PropertyX> with the names of the properties supported by Capability from the
SAP IoT Service Cockpit.

4. Transfer the property values to be transferred as an array to the function block
Fb_JSON_Writer_01 and start the serialization using the trigger. Please note that the order of
the values within the array corresponds to the corresponding properties in the JSON-
BaseFrame!

WagoAppCloud: Use the function block FbPublishMQTT to publish messages using nativeMQTT.
The topic consists of the following: 'measures/< deviceAlternateId>'

1. Replace < deviceAlternateId> with the Alternate ID of the device from the SAP IoT Service
Cockpit.

2. Copy the payload generated by the WagoAppJSON into a byte array using MemCopySecure()
and pass it to the function block FbPublishMQTT.

3. Start the Publish process using the trigger.

Receiving data

WagoAppCloud: Use the function block FbSubscribeMQTT to subscribe messages using
nativeMQTT. The topic consists of the following: 'commands/< deviceAlternateId>'

1. Replace < deviceAlternateId> with the Alternate ID of the device from the SAP IoT Service
Cockpit.

e!COCKPIT application note – WagoAppCloud 45

WAGO-I/O-SYSTEM 750 Commissioning

Version 1.4.5

2. Start the subscription process using the trigger.

WagoAppJSON: Use the function block fbJSON_Parse to parse the payload received in JSON
format.

1. Copy the received payload into a byte array using MemCopySecure() and pass it to the
function block fbJSON_Parse.

2. Start the parse process using the trigger.

3. Extract the individual parameter values using the GetValueByPath() method of the
fbJSON_Parse function block. The path results as follows: commands/<Name Property> '.
Activate the process by setting the trigger.

4. Convert the string to the required data type (for example, with STRING_TO_REAL()).

4.2.5.10 Send cloud-to-device messages

You can send cloud-to-device messages using the Internet of Things Service API. Select Useful
Links > Device Management API from the menu. Navigate to the Devices section and click POST
/devices/{deviceId}/commands Sends a command. Click [Try it out] to activate the input mode.

Note

Important note!

When sending data via the IoT Service API, in contrast to the e!COCKPIT

program, the Device ID, the Capability ID and the Sensor ID are required

and the corresponding Alternate IDs are not used.

1. In the deviceId field, enter the ID of your device from the SAP IoT Service Cockpit.

2. Replace the value for capabilityId in the body with the capability ID from the SAP IoT Service
Cockpit.

3. Replace the key value list of the JSON object command in the body with the property names
and the corresponding values.

4. Replace the value for sensorId in the body with the ID of the sensor from the SAP IoT
Service Cockpit.

5. Send the cloud to device messages by clicking [Execute].

6. The code 200 is returned as the server response if the transmission was successful. In case
of an error, check the code and the response body for a possible error analysis.

4.2.5.11 SAP IoT Service Cockpit: Data Visualization

SAP offers a visualization option for the data in the IoT Service Cockpit under Device Management >
Devices.

Select your Device here and scroll to the Data Visualization area. Here you have the possibility to
select the sensors as well as their capabilities and properties for the visualization.

46 e!COCKPIT Anwendungshinweis – WagoAppCloud

Commissioning WAGO-I/O-SYSTEM 750

 Version 1.4.5

4.2.6 Cache Mode

The Linux Application writes the data it received from PLC program, into the cache. The
Linux Application continuously transmits the data to the cloud. Successfully transmitted data will
automatically be removed from cache. In case of a network connection failure the data is still kept
within the cache. This means that data is not lost and will be retransmitted to the cloud when internet
connection comes back.

If a network connection failure takes long time than Linux Application will automatically “rotate” (that
means throw away oldest but keep newest) data within the cache if the cache is reaching its maximum
size. This means that some data will be lost here.

4.2.6.1 RAM

The default cache mode is RAM. The maximum size of cache is limited to 3 MiB.

In case of electrical power outage all the cached data will get lost.

It is strongly recommended to use the cache mode RAM during development of the PLC program.

When changing the PLC program (i.e. during development) while the Cloud Connectivity
Linux Application is running a cold reset has to be done when deploying the new PLC program.
Otherwise (warm reset) changes are not reflected and may lead to a malfunction.

4.2.6.2 SD Card

If the data, which should be transmitted to the cloud, is important and should not get lost in
consequence of interruption of network connection or/and electrical power outage then it is possible to
cache these data on a persistent mass storage. In case of electrical power failure, the cached data will
not get lost. It will be transmitted to the cloud after reboot.

Information

Additional information

Caching to the SD Card is available for the operation mode

WAGO Protocol.

To setup SD Card the following steps are necessary:

1. Setup PFC for booting from internal flash:

1.1. Boot PFC from SD-Card

1.2. Web Based Management / Administrations – menue / Create Image // Create bootable image
von active Partition (SD) // Start Copy

1.3. Reboot PFC without SD-card

Step 2 is necessary only if the SD-Card was used for storing PFC firmware image before. If SD-Card
was used as mass storage before step 2 can be skipped. Formating the SD-Card via CBM ensures
that it only holds one partition (mmcblk0p1) which can be formated as ext3.

2. Prepare SD-Card for usage as mass storage:

2.1. Insert SD-Card

2.2. Establish SSH connection to PFC with root privileges
(https://www.youtube.com/watch?v=uKopjYASjc0)

2.3. Open WAGO Console Based Management Tool: cbm [ENTER]

2.4. Select Mass Storage (8) [ENTER]

2.5. Select SD Card (1) [ENTER]

2.6. Select FAT format medium (2) auswählen [ENTER]

2.7. Enter Volume Name MemoryCard [ENTER], [ENTER]

https://www.youtube.com/watch?v=uKopjYASjc0

e!COCKPIT application note – WagoAppCloud 47

WAGO-I/O-SYSTEM 750 Commissioning

Version 1.4.5

2.8. Press Q,Q,Q to exit WAGO Console Based Management Tool

2.9. Reboot PFC with inserted SD-Card

3. Format SD Card with ext3

3.1. Establish SSH connection to PFC with root privileges
(https://www.youtube.com/watch?v=uKopjYASjc0)

3.2. umount /dev/mmcblk0p1 [ENTER

3.3. mkfs.ext3 /dev/mmcblk0p1 -L MemoryCard [ENTER]

3.4. mount /dev/mmcblk0p1 /media/MemoryCard [ENTER]

3.5. chmod 2775 /media/MemoryCard [ENTER]

3.6. chgrp sdcard /media/MemoryCard [ENTER]

3.7. reboot [ENTER]

3.8. SD-Card is prepared. Open WBM, open „Cloud Connectivity“ configuration page and
configure cache-Mode „SD-Card“:

Figure 4-15: SD Card setup

This option is only available for operation mode WAGO Cloud and when your PFC booted from
internal NAND flash, but not from memory card. It instructs the Linux Application to reserve space for
cached data on mounted mass storage. By default there are following settings used:

- The cache size is limited to 512 MiB.

- Cache directory on SD Card is /media/MemoryCard

The cache mode SD Card intended to be used by a PLC program in production mode, it should not be
used during PLC development.

Note

Important note!

The lifetime of SD Cards is limited. Depending on the volume of data and

the sample interval the lifetime of the SD-Card are influenced. It is

recommended to use the SD Card and microSD Card from WAGO. The

advantages of these industrial SD Cards are the SLC storage cells (single

level cell) and a special wear-leveling algorithm for an equal usage of the

flash memory.

Please pay attention of the information in the data sheets of the respective

manufactors.

Note

Important note!

The SD Card used shall confirm to performance class 10 or better.

Otherwise, booting the PFC with cached data may take considerable time.

Note

Important note!

Since read and write operation on SD Card is slower compared to RAM the

minimum sample interval shall be 1000 ms. Otherwise some data might be

lost.

https://www.youtube.com/watch?v=uKopjYASjc0

48 e!COCKPIT Anwendungshinweis – WagoAppCloud

Commissioning WAGO-I/O-SYSTEM 750

 Version 1.4.5

Note

Important note!

The cache mode SD Card should not be used during development of a PLC

Program. If the PLC program changes (amount of collections or collection

IDs) this may lead to data loss or space occupation on SD card beyond the

configured limit.

Note

Important note!

When using the SD Card to cache data then the PLC runtime will start

delayed (up to 140 seconds) after reboot because persistent data has to be

analyzed first.

e!COCKPIT application note – WagoAppCloud 49

WAGO-I/O-SYSTEM 750 Appendix

Version 1.4.5

5 Appendix
dfsfsdf

5.1 Update a new version

5.1.1 Installing Linux Application

This section describes installation of the Linux Application

1. Launching the WBM in a Web browser. The WBM page shown in Figure 5-1 should be
displayed.

Figure 5-1: WBM Start Page before Installing the Linux Application (.ipk File)

2. Click Software Uploads in the menu on the left.

3. You are then prompted to authenticate. If using the default user name and password, enter
“admin” in the Username field and “wago” in the Password field. Click [Submit] to open the
Software Uploads page. You may need to confirm a security pop-up prior to that because you
are using the default values for user and password.

50 e!COCKPIT Anwendungshinweis – WagoAppCloud

Appendix WAGO-I/O-SYSTEM 750

 Version 1.4.5

Figure 5-2: Software Uploads WBM Page

4. Click [Browse] to open a File Upload window and navigate to the
Cloud-Connectivity_0.1.0_arm.ipk file. Then click the file to select and then click [Open].

5. Then click [Start Upload]. The file is uploaded to the PFC.

6. Select the “Activate” action in the “Activate new software” group and then click [Submit].
Installation of the Linux Application (.ipk file) is started.

7. Once the installation is complete, reload the window in the Web browser. The WBM page
shown in Figure 5-3 should be displayed. The Cloud Connectivity menu item has now been
added. Please find a description of the Cloud Connectivity configuration for the cloud service
in Section 4.

Figure 5-3: WBM Start Page after Installing the Linux Application (.ipk File)

e!COCKPIT application note – WagoAppCloud 51

WAGO-I/O-SYSTEM 750 Appendix

Version 1.4.5

5.1.2 IEC Libraries

5.1.2.1 Codesys 2.3

For Codesys 2.3 the libraries “WagoLibCloud.lib” and “WagoLibCloud_Internal.lib” need to be
referenced.

Copy the libraries into the following path of Codesys2.3-Software:

WAGO Software \ CODESYS V2.3 \ Targets \ WAGO \ Libraries \ Application

Add the libraries using:

Resources > Library Manager > [right-click] > Additional Library…

Figure 5-4: Add libraries in Codesys 2.3

52 e!COCKPIT Anwendungshinweis – WagoAppCloud

Appendix WAGO-I/O-SYSTEM 750

 Version 1.4.5

5.1.2.2 e!Cockpit

For e!COCKPIT the library “WagoAppCloud_x.x.x.x.compiled-library” needs to be installed and
referenced.

Install the library using

LibraryManager > Add Library > [Advanced...] > [Library Repository...] > [Install...]

Figure 5-5: Install the library in e!Cockpit

Note

Important note!

After an Online Change there might be changes concerning the data on

certain addresses. Please regard this in case of using pointers on addresses.

e!COCKPIT application note – WagoAppCloud 53

WAGO-I/O-SYSTEM 750 Appendix

Version 1.4.5

5.2 SCADA System Ignition (Sparkplug)

5.2.1 Architecture

The Sparkplug specification is used for communication with the SCADA system Ignition. The
Sparkplug specification is a detailed specification based on the MQTT protocol.

The following architecture picture is shown in the Sparkplug specification.

Figure 5-6: Architecture Sparkplug

The PFC is an MQTT Edge of Network Node (MQTT Edge Node) in the architecture of the Sparkplug
specification. The PFC takes the measured values from the field and after configuring the data points
in the PLC application, the measured values are forwarded in the format required by Sparkplug.

The requirement of Sparkplug to the MQTT Broker (MQTT Server in architecture picture) is that it is
compatible with the MQTT specification version 3.1.1. It is possible to use a broker MQTT Distributor
integrated in Ignition. The Broker MQTT Distributor is an add-on module in Ignition which can be
installed later. The use of third-party MQTT broker is also possible.

SCADA/IIoT is the SCADA application. The SCADA application also communicates via the Sparkplug
protocol. In Ignition the additional module MQTT Engine must be installed and the appropriate
configuration must be entered by the MQTT Broker.

WAGO PFC als
Edge Node

54 e!COCKPIT Anwendungshinweis – WagoAppCloud

Appendix WAGO-I/O-SYSTEM 750

 Version 1.4.5

Figure 5-7: MQTT Broker with Ignition

e!COCKPIT application note – WagoAppCloud 55

WAGO-I/O-SYSTEM 750 Appendix

Version 1.4.5

5.2.2 Configuration Cloud Connectivity with Ignition

1. Launch the PFC's WBM in a Web browser.

2. Click the Cloud Connectivity menu item.

3. Enter the Username and Password to authenticate on the PFC. Click [Submit]. A message
box may appear that prompts you to change the password for security reasons. The Cloud
Connectivity configuration page opens.

4. Activate the Cloud Connectivity by Service enabled.

5. In the “Settings” section, select the “MQTT AnyCloud” entry in the Cloud Platform selection
box.

6. A Pop-Up window will appear which indicates the following points

 To use the Sparkplug data protocol, a Sparkplug license required on the PFC. A test
license of 30 days on the PFC is available once.

7. The Group ID field can be used to group individual MQTT Edge nodes (PFC) together. A
Group ID must be entered.

8. Enter a name for the PFC in the Edge node ID field. The name of the Edge node ID is freely
selectable, but should not contain any special characters and should be unique for the
MQTT Broker.

9. The further configuration depends on the used MQTT Broker and its configuration.

10. Click the [Submit] button to write the configuration.

11. The PFC must be restarted to apply the settings.

5.2.3 Configuration in Ignition

This documentation assumes that Ignition has already been installed.

After successful installation, the following steps must be carried out:

 Install addition modules in Ignition

o MQTT Engine

o MQTT Distributor (optional: Installation only necessary it the internal MQTT Broker of
Ignition, the MQTT Distributor, is to be used.)

 Configure the module MQTT Engine according to the settings of the used MQTT Broker

 Activate writing from the SCADA application to the PFC in the MQTT Engine module.

https://inductiveautomation.com/downloads/ignition
https://docs.chariot.io/display/CLD/Getting+Started%3A+Single+Ignition+Architecture
https://docs.chariot.io/display/CLD/Module+Installation
https://docs.chariot.io/display/CLD/MQTT+Engine
https://docs.chariot.io/display/CLD/MQTT+Distributor
https://docs.chariot.io/display/CLD/Enable+Device+Writes+from+Ignition

56 e!COCKPIT Anwendungshinweis – WagoAppCloud

Appendix WAGO-I/O-SYSTEM 750

 Version 1.4.5

5.2.4 PLC Application with Ignition

To create the PLC application, it is heplful to use the following example project as a guideline:

 WagoAppCloud_FbCommandListener_Sparkplug.ecp

The structure of the configuration in the PLC program for the Sparkplug data protocol is very similar to
that of the WAGO protocol. (see chapter 3)

The configuration of the structure and the parameters in the PLC program is mapped into the structure
of Ignition.

Publish data to Ignition

The directory MyGroupID/MyEdgeNodeID/input contains all configured collections with the
corresponding variables from the PLC application.

The name of the collection in Ignition consists of the parameters typCollection.sName and
typCollection.dwCollectionId from the PLC program.

Example:

 In PLC application

o typCollection.sName = ‘MyFirstCollection‘

o typCollection.dwCollectionId = 1

 In Igniton: MyGroupID/MyEdgeNodeID/input/MyFirstCollection_1

Figure 5-8: Collection in Ignition Designer

e!COCKPIT application note – WagoAppCloud 57

WAGO-I/O-SYSTEM 750 Appendix

Version 1.4.5

The following table shows the mapping of the parameters from typVariableDescription in the
PLC application to the properties in Ignition.

Configuration in PLC application Property in Ignition Description

typVariableDescription.sTag Name Name of the variable

typVariableDescription.sUnit EngUnit Unit of the variable

typVariableDescription.eValueType Datatype Data type of the variable

 ‘Access Rights‘ = Read Only Access rights in Ignition

The sent data is only sent with read rights.

Receive commands from Ignition

The directory MyGroupID/MyEdgeNodeID/output contains all commands from the PLC application.

The designation of the commands in Ignition consists of the parameters
typCommandDescription.sName and typCommandDescription.bCommandId from the
PLC application.

Example:

 In PLC application

o typCommandDescription.sName = ‘MyFirstCommand‘

o typCommandDescription.bCommandId = 1

 In Ignition: MyGroupID/MyEdgeNodeID/output/MyFirstCommand_1

Figure 5-9: Commands in Ignition Designer

58 e!COCKPIT Anwendungshinweis – WagoAppCloud

Appendix WAGO-I/O-SYSTEM 750

 Version 1.4.5

The following table shows the mapping of the parameters from typCommandParmeterDescription in
the PLC program to the properties in Ignition.

Configuration in PLC application Property in Ignition Beschreibung

typCommandParameterDescription.
sParameterName

Name Name of the variable

typCommandParameterDescription.
eParamterType

Datatype Data type of the variable

 ‘Access Rights‘ = Read/Write Access rights in Ignition

The commands are received in the PLC program in the function block FbCommandListener and can
be further evaluated there.

Note that the Sparkplug specification does not support CommandResponse. Therefore the following
points must be observed in the PLC application:

 No use of FbCommandResponder

 typCommandDescription.bNumberOfResponseParameters = 0

e!COCKPIT application note – WagoAppCloud 59

WAGO-I/O-SYSTEM 750 Appendix

Version 1.4.5

Examples: Policies for AWS

5.2.5 Policy without curtailment

{

 "Version": "2019-02-25",

 "Statement": [

 {

 "Action": [

 "iot:Publish",

 "iot:Subscribe",

 "iot:Connect",

 "iot:Receive"

],

 "Effect": "Allow",

 "Resource": [

 "*"

]

 }

]

}

60 e!COCKPIT Anwendungshinweis – WagoAppCloud

Appendix WAGO-I/O-SYSTEM 750

 Version 1.4.5

5.2.6 Possible Policy for WAGO Protocol v1.0

This example has been executed with the following settings:

- Account 1234-5678-9123 in the region New Virginia (us-east-1)

- WAGO Protocol Version 1.0

- Client ID in WBM: ‘PFC200’

{

 "Version": "2019-02-26",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "iot:Publish",

 "iot:Receive"

],

 "Resource": [

 "arn:aws:iot:us-east-1:123456789123:topic/PFC200/CloudHello",

 "arn:aws:iot:us-east-1:123456789123:topic/PFC200/Commands",

 "arn:aws:iot:us-east-1:123456789123:topic/PFC200/DeviceHello",

 "arn:aws:iot:us-east-1:123456789123:topic/PFC200/DeviceInfo",

 "arn:aws:iot:us-east-1:123456789123:topic/PFC200/DeviceState",

 "arn:aws:iot:us-east-1:123456789123:topic/PFC200/TagConfiguration",

 "arn:aws:iot:us-east-1:123456789123:topic/PFC200/TagValues",

 "arn:aws:iot:us-east-1:123456789123:topic/PFC200/EventTagValues",

 "arn:aws:iot:us-east-1:123456789123:topic/PFC200/CommandRegistration",

 "arn:aws:iot:us-east-1:123456789123:topic/PFC200/CommandResponse"

]

 },

 {

 "Effect": "Allow",

 "Action": [

 "iot:Subscribe"

],

 "Resource": [

 "arn:aws:iot:us-east-1:123456789123:topicfilter/PFC200/CloudHello",

 "arn:aws:iot:us-east-1:123456789123:topicfilter/PFC200/Commands"

]

 },

 {

 "Effect": "Allow",

 "Action": [

 "iot:Connect"

],

 "Resource": [

 "arn:aws:iot:us-east-1:123456789123:client/PFC200"

]

 }

]

}

e!COCKPIT application note – WagoAppCloud 61

WAGO-I/O-SYSTEM 750 Appendix

Version 1.4.5

5.2.7 Possible Policy for WAGO Protocol v1.2

This example has been executed with the following settings:

- Account 1234-5678-9123 in the region New Virginia (us-east-1)

- WAGO Protocol Version 1.2

- Client ID in WBM: ‘PFC200’

{

 "Version": "2019-02-26",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "iot:Publish",

 "iot:Receive"

],

 "Resource": [

 "arn:aws:iot:us-east-1:123456789123:topic/PFC200/CloudHello",

 "arn:aws:iot:us-east-1:123456789123:topic/PFC200/DeviceHello",

 "arn:aws:iot:us-east-1:123456789123:topic/1.2/PFC200/Commands",

 "arn:aws:iot:us-east-1:123456789123:topic/1.2/PFC200/DeviceInfo",

 "arn:aws:iot:us-east-1:123456789123:topic/1.2/PFC200/DeviceState",

 "arn:aws:iot:us-east-1:123456789123:topic/1.2/PFC200/TagConfiguration",

 "arn:aws:iot:us-east-1:123456789123:topic/1.2/PFC200/TagValues",

 "arn:aws:iot:us-east-1:123456789123:topic/1.2/PFC200/CommandRegistration",

 "arn:aws:iot:us-east-1:123456789123:topic/1.2/PFC200/CommandResponse"

]

 },

 {

 "Effect": "Allow",

 "Action": [

 "iot:Subscribe"

],

 "Resource": [

 "arn:aws:iot:us-east-1:123456789123:topicfilter/PFC200/CloudHello",

 "arn:aws:iot:us-east-1:123456789123:topicfilter/1.2/PFC200/Commands"

]

 },

 {

 "Effect": "Allow",

 "Action": [

 "iot:Connect"

],

 "Resource": [

 "arn:aws:iot:us-east-1:123456789123:client/PFC200"

]

 }

]

}

WAGO Kontakttechnik GmbH & Co. KG
Postbox 2880 • D-32385 Minden
Hansastraße 27 • D-32423 Minden
Phone: +49 (0) 571/8 87 – 0
Fax: +49 (0) 571/8 87 – 1 69
E-Mail: info@wago.com
Internet: http://www.wago.com

